Mitra Lab Home at The University of West Georgia

Log On

Research Significance

Characterization of Chlamydomonas random insertional mutants that are pigment deficient or light sensitive, can lead to the identification of genes that are defective in: (a) sensing light irradiance (b) tolerance to high light stress and (c) making necessary adjustments in their photosynthetic apparatus. Apart from significance of this research in the basic science field, it also has applications in improving solar conversion efficiency in a mass culture. Large chlorophyll antenna leads to over absorption of light by the first few layers of cells in mass culture at a rate that far exceeds the rate at which photosynthesis can utilize them, resulting in dissipation and loss of the excess photons as fluorescence or heat. Meanwhile cells deeper in the culture are deprived of much needed sunlight. Algal strains having a smaller chlorophyll antenna will diminish the over-absorption and wasteful dissipation of excitation energy by the cells and it will also diminish photo-inhibition of photosynthesis at the surface while allowing for greater transmittance of light deeper into the culture. Such altered optical properties of the cells would result in greater photosynthetic productivity and better solar conversion efficiency in the mass culture.  Additionally, in Chlamydomonas, NPQ and LhcSR3 is activated in high light, leading to strong heat dissipation even at moderate light. This indicates that improvement of light energy conversion can also be obtained by modulation of heat dissipation response. Our research has the potential of identifying key components in the signal transduction pathway involved in the regulation of Chl biosynthetic pathway and NPQ. This can provide us with tools to improve photosynthetic productivity in future.