MT152 Semester 2 - 2000

Solutions to Problem Sheet 2

1. First find where the plane \(z = \frac{x}{2} - 3y + 3 \) intersects the axes.
The plane intersects \(x \)-axis \((y = z = 0) \) at \(x = -6 \), \(y \)-axis \((x = z = 0) \) at \(y = 1 \) and \(z \)-axis \((x = y = 0) \) at \(z = 3 \). Then draw the triangle. The triangle defines the plane but it can still be hard to picture it!

2. Suppose the plane is \(ax + by + cz + d = 0 \).
If \((x_0, y_0, z_0), (x_1, y_1, z_1) \) are any two points on the plane then
\[
a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0) = 0.
\]
Using \((1, 0, 0) \) and \((3, 5, 1) \) gives \(2a + 5b + c = 0 \). \((1) \)
Using \((1, 0, 0) \) and \((4, 2, 0) \) gives \(3a + 2b = 0 \). \((2) \)
So from \((2) \) \(b = -\frac{3}{2}a \) and from \((1) \) \(c = -2a - 5\left(-\frac{3}{2}a\right) = \frac{11a}{2} \). Now substitute \((1, 0, 0) \)
into the plane \(ax + by + cz + d = 0 \) to get \(d = -a \). So we have
\[
ax - \frac{3}{2}ay + \frac{11}{2}az - a = 0.
\]
Dividing through by \(a \) we obtain
\[
2x - 3y + 11z - 2 = 0.
\]
(Check that it works!)

3. (H & H Sec. 11.5 Q2) Find the equation of the linear function \(z = c + mx + ny \),
whose graph contains the points \((0, 0, 0), (0, 2, -1), (-3, 0, -4) \).
Since \((0, 0, 0) \) satisfies the linear function \(z = c + mx + ny \) we obtain \(c = 0 \). So \(z = mx + ny \). Since \((0, 2, -1) \) satisfies the linear function \(z = mx + ny \) we obtain \(-1 = 2n \Rightarrow n = -\frac{1}{2} \).
So \(z = mx - \frac{1}{2}y \).
Since \((-3, 0, -4)\) satisfies the linear function \(z = mx - \frac{1}{2}y\) we obtain \(-4 = -3m\) \(\Rightarrow\) \(m = \frac{4}{3}\). Hence, \(z = \frac{4}{3}x - \frac{1}{2}y\).

4. (H & H Sec. 11.5 Q16) Sketch the graph of the linear function \(z = 4 + x - 2y\).
\(z\) intercept \((x = y = 0)\) is 4, \(x\) intercept \((y = z = 0)\) is \(-4\) and \(y\) intercept \((x = z = 0)\) is 2.

5. Sketch the surface \(z = -x^2 - y^2 + 6y\).
First we complete the square in \(y\).

\[
z = -x^2 - \left((y - 3)^2 - 9\right) \\
 = -x^2 - (y - 3)^2 + 9
\]

Axis of symmetry: \(x = 0\) and \(y = 3\). If \(y = 3\) then \(z = -x^2 + 9\) which is a parabola pointing down with maximum at \(x = 0\) and \(z = 9\). Note that the surface goes through the origin and intersects the \(xy\)-plane in the circle \(x^2 + (y - 3)^2 = 9\).
6. (H & H Sec. 11.3 Q5) Since only one graph is a plane iv) is (c).
Both (i) and (v) have circular symmetry as do (a) and (b) as \(z = f(x^2 + y^2) \). Now (a) \(z = \frac{1}{x^2 + y^2} \rightarrow +\infty \) as \(x \) and \(y \) go to zero. But (b) \(z = \frac{1}{e^{x^2+y^2}} \rightarrow \frac{1}{e^0} \rightarrow -1 \) as \(x \) and \(y \) go to zero. So (i) is (a) and (v) is (b).
(ii) is (d) a parabola pointing down in \(yz \)-space.
(iii) must be (e) - you can just see the oscillations on \(y \) and the cubic curves in \(x \)!
7. (H & H Sec. 11.3 Q8) If \(b > 0 \) the parabola points up with min at origin.
If \(b < 0 \) the parabola points down with max at origin.
If \(b = 0 \) i.e. \(y = z = 0 \) which rules out (ii).
In fact the only surface that is always negative for \(y < 0 \) is (iv).
8. (H & H Sec. 11.3 Q12) Draw the graph of the traveling wave function

\[
 h(x, t) = 3 + \cos(x - 0.5t)
\]

If \(t = 0 \) \(h(x, t) = 3 + \cos x \)
If \(t = \frac{\pi}{2} \) \(h(x, t) = 3 + \cos(x - \frac{\pi}{4}) \)
If \(t = \pi \) \(h(x, t) = 3 + \cos(x - \frac{\pi}{2}) \)
If \(t = \frac{3\pi}{2} \) \(h(x, t) = 3 + \cos(x - \frac{3\pi}{4}) \)
If \(t = 2\pi \) \(h(x, t) = 3 + \cos(x - \pi) \)

Also if \(x = 0 \) then \(h(x, t) = 3 + \cos(\frac{t}{2}) \) and if \(x = 2\pi \) then \(h(x, t) = 3 + \cos(\frac{t}{2}) \).
9. Use cross-sections to sketch \(z = 4(x - 1)^2 - y^2 \).

If \(y = 0 \) then \(z = 4(x - 1)^2 \) is a parabola pointing up with min at \(x = 1 \) and \(z = 0 \). If \(y = \pm 1 \) we have the same parabola at \(x = 1 \) and \(z = 0 \) but shifted down.

If \(x = 1 \) then \(z = -y^2 \) is a parabola pointing down with max at \(y = 0 \) and \(z = 0 \).