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Abstract

Machine Learning algorithms produce accurate
classifiers when trained on large, balanced datasets.
However, it is generally expensive to acquire labeled
data, while unlabeled data is available in much
larger amounts. A cost-effective alternative is to
use Semi-Supervised Learning, which uses unlabeled
data to improve supervised classifiers. Furthermore,
for many practical problems, data often exhibits
imbalanced class distributions and learning becomes
more challenging for both supervised and semi-
supervised learning scenarios. While the problem of
supervised learning from imbalanced data has been
extensively studied, it has not been studied much
for semi-supervised learning. Thus, in this study, we
carry out an empirical evaluation of a semi-supervised
learning algorithm, specifically self-training based on
Naive Bayes Multinomial (NBM), and address the issue
of imbalanced class distributions both at data-level (by
re-sampling) and algorithmic-level (using cost-sensitive
learning and ensembles). We conduct our study on the
problem of splice site prediction, a problem for which
the ratio of positive to negative examples is very high.
Our experiments on five different datasets show that a
simple method that adds only positive instances to the
labeled data in the semi-supervised iterations produces
consistently better results when compared with other
methods that deal with data imbalance.

1 Introduction

Quality data in adequate amounts is critical for
building successful prediction models, but often times,
in practice, one class (usually the more interesting class)
is underrepresented. The class imbalance phenomenon
occurs when the minority class is either very difficult
to acquire or when the minority examples are indeed
atypical relative to other cases. Generally, anomaly
or novelty detection problems exhibit highly imbal-
anced data. Some specific applications include credit

card frauds, cyber intrusions, medical diagnosis, face
recognition, detecting defects in error-prone software
modules, etc. Having a major unevenness between
the prior class probabilities leads to impartial learning
that severely alters the performance of classifiers which
would otherwise give acceptable results. For supervised
learning, many solutions have been proposed both at
data level (under-sampling and over-sampling), as well
as at the algorithm level (cost-sensitive learning and
ensemble methods); for a comprehensive survey, the
reader is directed to [4].

At data level, re-sampling techniques are some of the
most natural and easy remedies that can be used to
adjust the class distribution. The instance selection can
be randomized or subject to more informative criteria
[7, 1]. Learning from under-sampled data is susceptible
to information loss, but can speed up the learning
process as the size of the data is substantially de-
creased. On the other hand, over-sampling may lead to
longer computation time and over-fitting because of in-
stance duplication. Other solutions, more algorithmic-
oriented, involve cost-sensitive learning [11], active
learning [10], injecting extra knowledge and maybe
even human interaction during the learning process.
While not specifically designed for imbalanced class
distributions, collections of learners usually produce
better performance than a single individual classifier.
Ensemble of classifiers using bagging, boosting and
hybrid-approaches for imbalanced datasets were re-
viewed by Galar et al. [3] in the supervised framework.

In many domains, obtaining labeled data is an expen-
sive process that requires time and human expertise.
For example, in the biological field, where massive
amounts of DNA data are generated thanks to cost-
effective Next Generation Sequencing technologies, wet-
lab analysis remains expensive and tedious. One of
the most appealing ways to avoid the cost of having
experts manually label data is via automated semi-
supervised learning (SSL), which uses both labeled and
unlabeled data in training, typically small amounts
of labeled data along with much larger volumes of



unlabeled data. Examples of bioinformatics problems
successfully addressed with SSL approaches include
alternative splicing prediction [18; 19|, disease genes
detection [14], prediction of cancer recurrence based
on gene expression [16], etc. Furthermore, the work in
[8, 21] has shown the usefulness of explicitly addressing
the class imbalance problem for protein classification.
For DNA classification, the class imbalance problem
has been addressed in the supervised framework [20].
Specifically in this work, Wei et al. [20] study the
classification of human missense phenotype prediction
problem, using Support Vector Machines (SVM) in
a supervised scenario. However, a systematic study
of how SSL algorithms behave for imbalanced DNA
classification problems has not been performed. This
is precisely the problem that we address, which is to
study the effect of class imbalance in a semi-supervised
learning framework.

To gain a better understanding of the behavior
of SSL algorithms for highly skewed DNA data, we
base our study on splice site prediction using self-
training [22]. Self-training is one of the most popular
SSL algorithms, along with Expectation Maximization
(EM), co-training, transductive SVM, and graph-based
methods. Self-training can be seen as a simple wrapper
method applied to a base classifier.

Splice sites are intron-exon junctions. They can
be seen as relevant signals for the alternative splicing
process, which regulates transcription and ultimately
gene expression. We use five large DNA datasets with
a positive to negative ratio of 1 to 99. Starting with
these datasets, we disregard some of the instances in
order to reach milder levels of class imbalance, and
then gradually increase the level to study how. the
performance varies with the ratio. Although there are
other methods to identify splice sites, this study is
important at least from a theoretical perspective as it
can provide useful insights for other DNA classification
problems. To the best of our knowledge, this is the first
attempt to systematically study how the class ratio, in
the SSL framework, influences conventional solutions
such as re-sampling, ensembles of self-training classifiers
and cost-sensitive self-training approaches, when large,
highly imbalanced DNA splice site datasets are used.

Our aim is not to get the best possible results for the
splice site prediction problem, which has already been
successfully addressed, among others, by Sonnenburg et
al. [17] using SVM and specialized kernels, but rather to
study the effects of imbalanced data on SSL algorithms.
Thus, we cannot directly compare our results with
the results such as those reported in [17] as both the
problem addressed and the approach (supervised versus
semi-supervised; SVM versus NBM) are different.

The rest of this paper is organized as follows: Section

2 describes the approaches studied. We explain how we
designed our experiments in Section 3. Specifically, the
data used and the feature representation are described
in Section 3.1, our research questions are enumerated
in Section 3.2 and the metrics used in Section 3.3.
Experimental results and discussions can be found in
Section 4. In Section 5 we contrast our study with
other related studies. We draw some conclusions and
propose future research directions in Section 6.

2 Approaches

Self-training is a bootstrapping technique in which,
first, a base learner is trained on just the labeled data.
Next, a randomly chosen sample from the unlabeled
pool is labeled using the classifier trained on just the
labeled data. ' From /'these newly labeled instances,
the most confidently classified examples are added to
the labeled set and the classifier retrains itself on this
augmented labeled set. The process is iterative, and at
each step more unlabeled instances are classified and
then used in retraining. One general constraint is to
maintain the positive to negative ratio of the labeled
data. For example, if the class ratio in the labeled
dataset is 1 to 5, then 6 examples are extracted form
the unlabeled pool and added to the labeled seed set:
the topmost confident positive prediction along with
the top 5 most confident negative predictions. We refer
to this algorithm as self-training with imbalanced data
(STI) because there is no modification made to take
into account the class distribution. At each iteration,
the most confidently labeled examples are added, such
that the original class distribution in the labeled set is
maintained. The process continues until the unlabeled
instances are exhausted.

We next discuss approaches that are designed to
address the imbalanced data problem. The self-training
approach described above does not specifically deal
with this problem. Given that for our problem,
there are highly skewed datasets, where the posi-
tive class can represent as little as 1% of the total
number of examples, it is important to investigate
the strengths and limitations of some of the most
popular re-sampling techniques. As mentioned above,
there are two categories of approaches for dealing
with imbalanced datasets: data-level approaches and
algorithmic-level approaches. In the first category, re-
sampling helps to readjust the class distribution so
that the learner has an equal chance of learning the
positive and negative classes. Under this assumption,
the labeled data can be balanced in two ways. First,
under-sampling can be performed. We keep all positive
instances and randomly pick negative instances until
a balanced dataset is obtained. We name this variant



self-training with under-sampling (STU). Second, the
minority class can be over-sampled until an equal
proportion is reached. We use the Synthetic Minority
Over-sampling Technique (SMOTE) proposed in [1],
which is an informed technique, as opposed to a
random one. In SMOTE, instances of interest are
generated by interpolating other positive instances, in
the feature space. They are relatively “novel” examples,
whereas in random over-sampling, positive instances
are simply duplicated. We opted for SMOTE because
random over-sampling may increase the possibility of
overfitting, since exact copies of the minority class add
no new information to the dataset. We named this
variation self-training with over-sampling (STO). For
these two variants, the labeled data that the learner
is initially trained on is balanced (via under- or over-
sampling), therefore only two instances are added into
the labeled set at each iteration, the top most confident
from each class.

Along the same lines, we propose a new and simple
approach of dealing with the imbalance problem, which
is to add only those instances that are found to be
positive by the base learner. This modifies the class
distribution in the semi-supervised step, but the base
classifier initially trains on the labeled set which is im-
balanced. We give the classifier the opportunity to see
more examples from the minority class in subsequent
iterations, and if an unlabeled example is classified as
negative, it gets assigned a null weight. We name this
new variant self-training with positive (STP).

In the second category of approaches for dealing with
imbalanced datasets, i.e., algorithmic-level methods, we
first use a cost sensitive approach with self-training and
denote this variant as self-training with costs (STC).
Since the positive instances are so rare, they are given
a higher misclassification cost. The values are equal to
the imbalance coefficients, and false positives will be
more penalized than false negatives. ' For example, if
the positive to negative ratio is 1 to 99, we assign a
cost of 99 for a positive instance that is classified as
negative, and a cost of 1 for any negative instance that
is incorrectly classified as positive.

Finally, we also investigate a variant of self-training
with an ensemble approach, self-training with ensemble
(STE). Previous studies show that bagging several
weak classifiers self-trained on bootstrapped subsam-
ples of the labeled data outperforms multi-view training
[13]. Instead of using random bootstrap sampling,
our sub-classifiers are trained on balanced subspaces
created using the approach from [12], to account for the
imbalance problem. Specifically, each balanced subset
contains all the minority instances and an equal num-
ber of majority instances sampled at random without
replacement. In other words, all subsets contain the

same minority instances but non-overlapping majority
instances. From all these balanced subset, we learn
classifiers that vote on the instances to be added to
the training data at the next self-training iteration.
That means, the instances with the highest averaged
prediction are added back to the labeled subset of each
classifier and each of them is retrained.

For all the variants described above, we use Naive
Bayes Multinomial (NBM) as the base learner for self-
training. NBM is a desirable classifier in bootstrapping
approaches, given that it allows for faster computation
as compared to other approaches such as SVM.

3 Experimental Setup

We start this section by describing the data used in
our study and the feature representation. As mentioned
above, we investigate the behavior of self-training
NBM variants in the context of imbalanced data,
with application to the binary classification problem of
predicting splice sites in a DNA sequence.

3.1 Data and Feature Representation

The acceptor splice site datasets that we used in
our work were first introduced in a domain adaptation
study [15]. The datasets belong to five different
organisms, C. elegans, C. remanei, P. pacificus, D.
melanogaster, and A. thaliana. Each instance repre-
sents a DNA sequence that is 141 nucleotides long.
The AG dimer, signaling the acceptor, is set at a fixed
position in the sequence, specifically the 61st. The class
label indicates whether the dimer is a true acceptor site
(positive class) or not (negative class). On average,
each data sets contains about 160K instances, except
for C. elegans, which contains roughly 100K instances;
approximately 1% of the instances are positive. We will
be representing the instances following the approach
from [5]. Each sequence will have 141 features corre-
sponding to positions in the sequence, and each feature
can take one of the four values {A, C, G, T}. The value
of a feature in a sequence indicates the nucleotide found
at that position, corresponding to that feature.

3.2 Research Questions

Our experimental design specifically addresses the fol-
lowing research questions: (1) What is the most effec-
tive learning strategy when training classifiers on highly
imbalanced splice site datasets in a semi-supervised
framework? (2) How does the performance of the
algorithms vary with the class distribution ratio?

To address the first question, we compare the variants
described in the previous section, including the classical



0.9

0.8 5% Labeled, 95% Unlabeled B STI
STU
0.7 STO
06 : mSTP
0.5 5 x @ STC
N ‘B ! b7 . EISTE
i N | i E .
0.3 Y Ny - g
0.2 f%g I%? o %ﬁ Iig
g N BVE B
0.1 -} N B -}
0 %5 gé : :“*\:d I§4 .
1:5 1:10 1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:99

Figure 1: Averages of the auPRC values for the minority class over 5 organisms, when learning from 5% labeled data
and 95% unlabeled data, while varying the positive to negative ratio from 1:5 to 1:99.

self-training approach with imbalanced data (STI),
which is our baseline. The behavior of semi-supervised
classifiers trained on imbalanced datasets is expected
to vary with the class distribution ratio. Our second
question is meant to test this hypothesis. We vary
the ratio of positive to negative examples from 1:5 to
1:99. This is done by discarding some of the majority
instances at random. Since semi-supervised learning
is advantageous when there are far more unlabeled
examples than labeled examples, we consider 5% of
the data to be labeled and the remaining 95% will be
treated as unlabeled. Both labeled and “unlabeled”
sets are chosen at random, without replacement, from
the original dataset. To simulate the unlabeled set, we
simply ignore the labels of the instances in that set.

3.3 Evaluation Metrics

We evaluate our classifiers using the area under the
Precision-Recall Curve (auPRC), which is a better
assessment metric as compared to the area under
the Receiver-Operating Curve (auROC) when tackling
problems with highly imbalanced datasets [2]. Since the
minority class of true acceptor splice sites is of interest,
we concentrate on this class and how the algorithms can
identify these positive instances.

To account for sampling variation, for each organism
we perform 10-fold cross validation and average the
auPRC values over the 10 folds. At each round, 90% of
the data was used in training and the remaining 10%
was used as test. From the 90% training data, 5% was
set aside as labeled while the rest was used as unlabeled.
In our graphs, we report the average (due to space
limitations and the fact that the results were generally
consistent) over all five organisms of the auPRC values
for the positive class.

4 Results

We have summarized our results in Figure 1. The
graph represents averaged auPRC values over all five
organisms, obtained from classifiers trained on 5%
labeled data and 95% unlabeled data. As can be seen
from the figure, STP outperforms all the other models.
This suggests that gradually balancing the labeled data
during the semi-supervised step is a useful technique to
deal with imbalanced distributions. Surprisingly, the
classical approach, STI is the second best.

It has been reported that under-sampling is more
suitable for semi-supervised learning on imbalanced
datasets than over-sampling [9]. We have observed
the same trend when the class ratio is relatively low.
However, for highly imbalanced datasets (over 1:50),
over-sampling seems to be a better approach.

Ensemble learning outperforms the re-sampling tech-
niques except for the highest imbalanced cases (1:90 and
1:99). This result is consistent with the conclusions in
the review by Galar et al. [3], who showed that ensem-
ble classifiers are more effective than single classifiers
trained on re-sampled data in supervised frameworks.

Cost-sensitive learning has also been shown to out-
perform re-sampling techniques in supervised learning
[6], and the trend is maintained in the case of semi-
supervised learning, for lower degrees of imbalance (up
to 1:60).

As expected, overall, better values for auPRC are
obtained when the class distribution ratio is smaller
and they decrease for the more highly imbalanced cases
because the datasets increase in size and the prediction
problem becomes more difficult as the positive class is
more and more underrepresented.

Over-sampling tends to perform best when the class



ratio is higher (over 1:50), which shows that synthetic
generation of instances is useful when there is not
enough labeled data available.

To conclude, the best results were achieved by self-
training with positive instances (STP), followed by the
standard self-training approach with imbalanced data
(STI), and then the ensemble variant (STE), closely
follwed by the cost-sensitive approach (STC). However,
for the most extreme case of imbalance (1:99), over-
sampling and ensembles are better suited.

5 Related Work

Previous studies of semi-supervised learning from
imbalanced data have focused on datasets with rela-
tively low imbalance degrees. An interesting ensemble-
based approach for the sentiment analysis problem
was proposed by Li et al. [9]. Co-training was
used as a base-classifier in their work. The authors
experimented with four different domains, and the class
ratio ranged from roughly 1:3 to 1:8. To address the
class imbalance, they first created balanced subsets
using the approach from [12] (also used in our study for
the STE variant). Next, they dynamically generated
two random feature subspaces from each subset and
used co-training to learn from these subsets. Their
approach showed improvement over under-sampling
methods in the context of sentiment classification. Our
results for STE are consistent with their findings for
smaller class ratios.

One other study that deals with imbalanced data
and involves semi-supervised learning was proposed by
Kundu et al. [8] to address the problem of predicting
SH2-peptide interactions. However, the use of semi-
supervised learning in this-approach is different from
the use in the previously reviewed work and also from
our work, as will be explained in what follows. In [§],
the positive (minority) class consists of SH2-peptide
interactions, and the negative (majority) class consists
of non-interactions. Positive instances (interactions)
can be reliably identified from high density peptide and
microarray experiments. However, negative instances
(non-interactions) are sometimes harder to established
- lack of current evidence for an interaction could imply
a non-interaction or an interaction to be discovered in
the future. This is why, in some of the 51 datasets
used in [8] (the largest having 400 instances), there
could be up to 15 times more positive instances as
compared to negative instances (a ratio that may
seem counterintuitive given that the positive class
represents the minority). When this happens, self-
training is used to iteratively learn a model from a
small, reliable dataset, followed by the use of the
resulting model to identify non-interactions (unlabeled

instances confidently predicted as negatives). As a
result, a balanced dataset is obtained. When there
are more negative instances as compared to positives,
in the original training set, over-sampling is used to
generate more positive instances. The final models,
polynomial kernel SVMs, are trained on the resulting
balanced datasets and customized through parameter
validation. The results outperform state-of-the-art
SH2-peptide interaction prediction tools. In conclusion,
the approach in [8] introduces an alternative usage for
self-training, that might be useful for many biological
classification problems, where the negative/majority
class cannot always be established reliably.  This
includes also our splice site prediction problem, as it
can happen that for some of the sites considered to be
negative in our data, there/could be later evidence to
show that they are, in fact, positives.

6 Conclusions and Future Work

In this study, we have performed an analysis of
self-training classifiers on imbalanced data. Empirical
evidence on five large DNA datasets shows that a
simple self-training variation (STP) that balances the
labeled sets with only instances classified as positive,
can consistently exceed other standard methods by as
much as 7% in most cases. Self-training on the original
imbalanced sets (STI) was the second best variant.
The next best performance came from the ensemble
(STE) and cost (STC) variants for most of the cases,
with a notable exception for the over-sampling variant
(STO), which performed better for higher degrees of
class imbalance (1:90 and 1:99).

As part of future work, experimenting with different
DNA datasets could offer additional insight into the
problem. Co- or multi-training as well as representing
the instances with 2 or more complementary views
might potentially increase the overall performance.
Transductive approaches represent another avenue for
future work. At last, we would like to experiment
with approaches like the one introduced in [8] in order
to identify possible examples in our DNA dataset
mislabeled as negatives.
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