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HETEROGENEOUS ENSEMBLES FOR DREAM CHALLENGES: 

•  GOAL: build heterogeneous ensembles 

•  Parsimony of such an ensemble can be of 
even greater value for DREAM challenges 
due to enhanced interpretability 

•  Ensemble Selection(ES)/Pruning is a 
potential approach for this, but popular 
algorithms like Caruana’s ES (CES) are ad-
hoc (sub-optimal) and non-exhaustive 

MATERIALS and METHODS: 
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Target problem: Splice Site Prediction 
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 Visual description of the workflow used to in our experiments. K=10 for the PF datasets and K=5 for the SS datasets. 

RESULTS: 

•  DREAM challenges are a great mechanism for identifying the most effective solution(s) for challenging biomedical problems. 
 
•  Can we improve the (predictive) ability of DREAM challenges by considering the contributions of non-winning submissions/

models also? 
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•  RL able to better capture predictive performance 
close to the full ensembles with a much smaller 
number of base predictors. 

•  More capable of achieving this balance than 
CES, especially for larger datasets. 

•  The downstream performance or sizes of the RL 
selected ensembles is not sensitive to RL 
parameters (e.g., exploitation/exploration 
probability), showing robustness to parameters  
as compared to other, more ad-hoc ES methods. 

 

•  Algorithm to find an optimal action-selection policy. 
•  Proven to converge to an optimal solution (i.e. find an 

optimal action-selection policy) under certain constraints. 

RL Strategies for ES 
•  RL_greedy 

•  Reward is given by ensemble performance 
•  RL_pessimistic 

•  Reset to start as soon as performance drops 
•  RL_backtrack 

•  Go back one position when performance drops 

Reinforcement Learning (RL) 
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A. thaliana auESC size_ratio@60 size_ratio@120 size_ratio@180 perf_ratio@60 per_ratio@120 perf_ratio@180 

BP 0.3833 0.0167 0.0083 0.0056 0.8118 0.7912 0.8237 
FE 0.4769 1 1 1 1 1 1 
CES 0.4549 0.4 0.31 0.24 0.9710 0.9577 0.9379 
RL_greedy 0.4725 0.5 0.5 0.51 0.9946 0.9927 0.9945 
RL_pessimistic 0.4634 0.48 0.29 0.21 0.9919 0.9649 0.9623 
RL_backtrack 0.4721 0.87 0.79 0.75 0.9983 0.9919 0.9985 

•  Our approach can help extract more 
useful knowledge from DREAM 
challenges by constructing predictive 
and parsimonious ensembles of the 
submissions. 

•  Will be applied in the DREAM 
Respiratory Viral challenge 

•  Implementation available: 
https://github.com/GauravPandeyLab/lens   

Problem C. elegans D. melanogaster P. pacificus C. remanei A. thaliana 

#Features 141 141 141 141 141 

#Positives 1,598 997 1,596 1,600 1,600 

#Negatives 158,150 99,003 156,326 157,542 158,377 

 Total 159,748 100,000 157,922 159,142 159,977 

 
•  IDEA: A novel ensemble selection approach based 

on reinforcement learning (RL), which provides a 
systematic way of exhaustively exploring the many 
possible combinations of base predictors that can 
be selected into an ensemble 
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•  Explore 

•  Learn a policy 

•  Exploit 

•  Possible actions 
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