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Heterogeneous ensembles for DREAM Challenges

Heterogeneous Ensemble Methods for the Respiratory Viral DREAM Challenge

Prior results from the DREAM Rheumatoid Arthritis Challenge
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We cannot use the training set for learning base predictors as well 
as ensembles: O V E R F I T T I N G
Hence, to build heterogeneous ensembles, use LOOCV 
(deterministic)
• Use N-1 LOOCV predictions from the participants for training 

the ensemble
• Use the learned ensemble to classify the Nth instance

DREAM Challenges are very good at identifying the best individual (base) model(s).
• By “ensembling” the individual models, 

we can synthesize (accumulate) their inherent knowledge
• Performance boost, reduction in variance
Participants are free to train their own models and generate predictions
• Different setting from traditional methods, such as Boosting
• Heterogeneous ensembles

Supervised Ensembles

Stacking: plain, intra-/inter-cluster

Unsupervised Ensembles

SUMMA

Supervised Ensembles

Ensemble selection: 

Reinforcement Learning (two variants)

Results

The stackers were trained in a LOOCV procedure
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Supplementary Figure 4: Bootstrap distributions of the team and ensemble models generated 
during the collaborative phase of the challenge, ordered by overall rank. While the supervised 
ensemble models showed general improvement of the team models, particularly when built using 
the competitive phase submissions, unsupervised ensemble models actually showed diminished 
scores relative to individual team models. 
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Supplementary Figure 4: Bootstrap distributions of the team and ensemble models generated 
during the collaborative phase of the challenge, ordered by overall rank. While the supervised 
ensemble models showed general improvement of the team models, particularly when built using 
the competitive phase submissions, unsupervised ensemble models actually showed diminished 
scores relative to individual team models. 
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