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Abstract—Producing accurate classifiers depends on the qual-
ity and quantity of labeled data. The lack of labeled data, due
to its expensive generation, critically affects the application of
machine learning algorithms to biological problems. However,
unlabeled data may be acquired relatively faster and in larger
quantities thanks to current biochemical technologies, called Next
Generation Sequencing. In such cases, when the number of
labeled instances is overwhelmed by the number of unlabeled
instances, semi-supervised learning represents a cost-effective
alternative that can improve supervised classifiers by utilizing
unlabeled data. In practice, data oftentimes exhibits imbalanced
class distributions, which represents an obstacle for both super-
vised and semi-supervised learning. The problem of supervised
learning from imbalanced datasets has been extensively studied,
and various solutions have been proposed to produce classifiers
with optimal performance on highly skewed class distributions. In
the case of semi-supervised learning, there are not as many efforts
aimed at the imbalance data problem. In this paper, we study
several ensemble-based semi-supervised learning approaches for
predicting splice sites, a problem for which the imbalance ratio is
very high. We run experiments on five imbalanced datasets with
the goal of identifying which variants are the most effective.

Index Terms—semi-supervised learning; imbalanced datasets;
ensemble; self-training

I. INTRODUCTION

In domains such as online social media, biology, or
medicine, the research challenge has shifted from producing
data to interpreting data. For genetics, the bottleneck lies in the
interpretation and labeling of massive amounts of raw DNA
data produced by next generation sequencing technologies.
Machine learning and statistical analysis are practical and
efficient ways of analyzing and interpreting data. Supervised
learning is an effective technique that can assist in the an-
notation process, but supervised learning algorithms require
large labeled datasets in order to produce useful classification
systems. In any domain, the process of labeling data is an ex-
pensive task and for biology in particular, wet-lab experiments
remain costly and tedious, as they require human expertise
and time. If having experts manually label more data is not
an option (due to high costs), a desirable alternative is to
leverage the much larger quantities of unlabeled data (when
available). This automated approach, namely semi-supervised
learning (SSL), typically utilizes small amounts of labeled data
and considerably larger amounts of unlabeled data in training,
with the ideal goal of improving upon a classifier trained only
on the labeled data.

Improving supervised classifiers by leveraging unlabeled
data is a very attractive concept, yet it does not always work as
intended. In practice, it is very common for a classifier to be
degraded by the unlabeled data [1]. Deciding whether or not to
use the unlabeled data is a problematic task [2], and the focus
of ongoing research [3]. Moreover, imbalanced datasets pose
serious problems for all classifiers, both supervised and semi-
supervised (transductive also), but the supervised learning field
enjoys a richer collection of solutions to overcome problems
raised by imbalanced class distributions. Ideally, datasets
should be sufficiently large, as well as balanced in order to
result in classifiers that learn significantly better than a random
model; but many times in practice, one common obstacle
any learning algorithm must overcome is the class imbalance
problem. This is a phenomenon that occurs when examples
from one class, usually the class of interest, are very difficult to
acquire or are genuinely atypical, in comparison with the other
classes. For example, novelty or anomaly detection problems
are affected by high imbalance. More specific applications
include credit card frauds, cyber intrusions, medical diagnosis,
face recognition, detecting defects in error-prone software
modules, etc. A significant disproportion in the class prior
probabilities usually leads to biased learning.

Classifiers that otherwise behave favorably (in the presence
of balanced, or mildly imbalanced data), are negatively af-
fected when learning from non-uniform distributions. In the
supervised context, many solutions have been proposed. At
data level, under-sampling is the most straightforward solution.
Adjusting the class distribution can be done by simply discard-
ing instances from the majority class. In this case, the trade-off
is between information loss and speed of learning. Selecting
which instances to keep (or conversely, discard) can be done
randomly, or in a more informative way [4]. Another case of
re-sampling is over-sampling. The caveats here include longer
computation times and over-fitting caused by instance replica-
tion. This process can also be randomized, although not much
information is gained - since duplicate instances can be viewed
as one instance with increased weight. Creating completely
new artificial instances represents a more informative way of
over-sampling, e.g., the SMOTE technique [5]. At algorithmic
level, solutions involving cost matrices are most common.
The cost matrix contains penalties associated with different
classification errors (as some mistakes are more serious than
others). Other techniques include active learning [6], injecting
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extra knowledge and maybe even human interaction during
the learning process. Ensemble learning is another approach,
even though it was not originally intended for imbalanced
distributions. Collections of classifiers using bagging, boosting
and hybrid approaches specifically targeting imbalanced data
were reviewed by Galar et al. [7] in the supervised framework.

For SSL, there are notable studies that explore the im-
balanced problem and propose effective solutions, but the
imbalance degrees are moderate (up to 1-to-40). Our aim in
this study is to adapt existing solutions to datasets with higher
degrees of imbalance (up to 1-to-99), and study their behavior
on significantly disproportionate class distributions when the
labeled data available is less than 1%. Such a small amount
of labeled data is expected to lead to weak classifiers, but an
ensemble of classifiers can help overcome, to some extent,
this shortcoming. It has been shown by Galar et al. [7] that
ensembles perform better than single learners trained on re-
sampled data in supervised frameworks. Another study by Li
et al. [8] led to the same conclusion, that an ensembles of
co-training algorithms is suitable for imbalanced datasets.

To better understand the behavior of SSL algorithms for
DNA prediction problems when the data suffers from severe
class asymmetry, we explore the problem of classifying splice
sites. We are interested in observing if and how small amounts
of labeled data influence the behavior of semi-supervised algo-
rithms. We use ensembles of self-trained classifier and address
the imbalance issue in three ways - (1) by creating balanced
subsets to train the initial sub-classifiers of the ensemble, (2)
by dynamically balancing the total amount of labeled data
during the semi-supervised iterations, and (3) by ensuring the
sub-classifiers remain diverse enough, such that the ensemble
benefits from their bagged voting. Specifically, we explore SSL
algorithms based on ensembles of classifiers in the context
of acceptor splice site prediction. Splice sites are found at
the boundaries between intron-exon junctions (in the case of
acceptor splice sites) and between exon-intron junctions (in the
case of donor splice sites). They are relevant signals to the al-
ternative splicing process thereby regulating transcription and
gene expression. Generally, splice sites are canonical, which
means they are indicated by the presence of the dimers “AG”
and “GT” for acceptor and donor sites, respectively. However,
the simple occurrence of the dimer is not enough to declare a
splice site, as the possibilities are enormous for a 2-nucleotide-
long sequence to appear in a genome. Fortunately, the areas
surrounding splice sites exhibit strong consensus sequences
which, although somewhat different from one organism to
another, can help statistical analysis and prediction algorithms.
Splice site prediction consists of two extremely imbalanced
classification tasks: discriminating between true acceptor sites
and decoy positions with the AG dimer (which is the problem
we are addressing in this paper) and discriminating between
true donor sites and decoy positions, with the GT dimer.

The rest of the paper is organized as follows: we review
similar work in Section II and present the context and need
for our study. The methods we used are described in Section
III. In Section IV we describe the data, the research questions

and our experimental setup. We discuss our results in Section
V and present our conclusions inSection VI, where we also
enumerate several directions we are interested in pursuing as
future work.

II. RELATED WORK

Semi-supervised learning was successfully applied to many
bioinformatics problems, including predicting alternatively
spliced exons [9], [10], detecting disease genes [11], predicting
cancer recurrence based on gene expression [12], classifying
protein domains into SCP (Structural Classification of Pro-
teins) super-families [13], predicting protein localization [14],
[15], motif discovery [16], and also in problems related to
gene regulatory networks [17], [18].

For many applications in bioinformatics, the imbalance data
problem is also prevalent; Qi et al. [19] and Kundu et al.
[20] have shown the usefulness of explicitly addressing the
class imbalance problem for protein classification. Qi et al.
[19] enhance semi-supervised multi-task learning by using
auxiliary information and successfully detect interacting pairs
between human proteins and HIV-1 proteins. For this problem,
the imbalance is caused by the fact that truly interactive protein
pairs are rare, yet there are numerous examples of protein
pairs which could potentially interact (but currently lack
experimental proof). Kundu et al. [20] use SSL (self-training
in particular) to first balance a dataset of SH2-peptide inter-
actions, where the positive class constitutes interactions, and
the negative class consists of non-interactions. The negative
class of non-interactions is more difficult to establish, because
the simple lack of current evidence does not necessarily mean
the interaction cannot occur in future circumstances. In their
case, self-training is used to identify non-interactions. Having
now extra confidence that the instances are indeed negative,
a final supervised model is trained on the balanced datasets,
namely Support Vector Machines (SVM) with a polynomial
kernel. This innovative usage of SSL could benefit a larger
collection of biological classification problems where one
class cannot always be reliably determined. The splice site
prediction problem falls in the same category because some
splice sites which are currently established as negative, might
prove later on to be, in fact, positives.

Kondratovich et al. [21] used Transductive Support Vector
Machines (TSVM) on small but imbalanced datasets for the
problem of molecule activity prediction. Experiments on 10
datasets with imbalance ratios of up to 1-to-40 and a maximum
of 3,000 instances demonstrated the effectiveness of TSVMs
in overcoming obstacles posed by imbalanced data.

Li et al. [8] found a solution for SSL from imbalanced
data in the domain of sentiment classification. Their approach
employs an ensemble of co-trained classifiers. Each sub-
classifier is learned from a balanced subset (obtained using
a technique initially recommended by Liu et al. [22] - which
we also used in this study, and describe in Section III). For
co-training, Li et al. [8] dynamically generated two views
by randomly sub-sampling the feature space. The authors
experimented with four different domains, and the class ratio
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of the datasets ranged from roughly 1-to-3 to 1-to-8. Co-
training requires the data to be represented according to two
views, where each view should be sufficient for classification
and independent of the other view given the class [23], the
objective being to learn classifiers that inform each other about
their best predictions on the unlabeled data. Since our datasets
exhibit imbalance degrees of 1-to-99, having two views for
each of the 99 sub-classifiers would unnecessarily increase
the memory complexity - a trade-off we did not find worthy at
the moment. As randomly generated views do not necessarily
satisfy these conditions, in our approach we use self-training
to avoid any possible problems caused by random splits and
the need for more sophisticated ways to split the features.

Korecki et al. [4] also used self-training and ensembles
of random forests on a multi-class problem to discriminate
between complex simulations. In the semi-supervised step,
they used a more informative approach of deciding which
instances to add to the labeled set: a threshold based on
the average Euclidean distances to the centroids found in the
labeled set.

For DNA classification, the class imbalance problem has
been addressed in the supervised framework by Wei et al.
[24]. Specifically, the authors study the classification of human
missense phenotype prediction problem, using SVM in a
supervised scenario.

In our previous work [25], we studied a variety of tech-
niques to alleviate the imbalance data issue in the semi-
supervised framework for the DNA prediction problem of
identifying acceptor splice sites. We found that dynamically
balancing the labeled dataset during the semi-supervised
self-training iterations was the most successful, surpassing
re-sampling techniques (random under- and SMOTE over-
sampling), cost-sensitive and ensemble approaches. In this
paper, our aim is to experiment with ensembles of self-training
classifiers that bootstrap the unlabeled data and dynamically
balance the initial labeled set, when very small amounts of
labeled data are available (less than 1% of the total data, in-
cluding unlabeled). We compare our ensemble-based variants
(where sub-classifiers are trained on balanced subsets of the
labeled data) with a state-of-the-art approach from the domain
of sentiment classification [8], which we adapted for self-
training. Splice sites can be accurately identified using SVM
and specialized kernels, as Sonnenburg et al. have shown in
[26]. As opposed to Sonnenburg et al. who used supervised
SVMs, we are addressing the SSL case using Naı̈ve Bayes
classifiers. A direct comparison is not our primary objective,
nor possible, since the problem addressed and the approach
(supervised versus semi-supervised; SVM versus Naı̈ve Bayes)
are different.

III. METHODS

In this section we describe the types of methods we are
studying. Our focus is on ensemble methods and what varia-
tions of semi-supervised ensembles produce the best results.

We use self-training, an algorithm introduced by Yarowsky
[27] for a natural language processing problem. Self-training is

a very popular semi-supervised algorithm, together with Ex-
pectation Maximization (EM), co-training, transductive Sup-
port Vector Machines, and graph-based methods. Self-training
is a simple wrapper method that can make use of any base
classifier. First, the base classifier is trained on the labeled
data and then used to classify the unlabeled data. The newly
labeled instances are subsequently used to self-train in the next
iteration, by integrating them in the labeled set and re-training
the classifier. An important requirement is to maintain the ratio
of positive to negative instances in the labeled training set
when adding the newly labeled instances. Self-training is an
iterative procedure whose goal is to enlarge the labeled dataset
by accepting its own predictions and incorporating them as
labeled data in order to ultimately produce a better model.

Combining the predictions from multiple diverse classifiers
produces more accurate results than any single classifier from
the ensemble, especially when the individual classifiers are
weak (slightly better than random guessing) [28]. Previous
studies have shown that bagging several weak classifiers self-
trained on bootstrapped subsamples of labeled data outper-
formed multi-view training [29]. In our work, we train each
individual classifier on a much smaller but balanced subsample
of the labeled data instead of utilizing random bootstrap
sampling. Specifically, we create balanced subsets from the
labeled data by replicating all the minority instances and
under-sampling without replacement the majority instances, an
approach introduced by Liu et al. [22]. We use as few labeled
instances as possible to still be able to create balanced subsets
in each case of imbalance degree, while maintaining the total
amount of labeled data under 1%. Each balanced subset is used
to train a base classifier (in our case, Naı̈ve Bayes) and every
classifier produces a prediction probability for each unlabeled
instance. The predicted probabilities from the sub-classifiers
are averaged and the decided label will be assigned to the
unlabeled instance. At each self-training iteration we only
label a fixed sample size (randomly picked from the unlabeled
data) for efficiency purposes. From the newly labeled instances
in this sample, we fetch the most confidently classified ones
to augment the labeled dataset with. The remainder of the
sample is simply discarded, and a new sample is picked for the
next iteration; this procedure ensures that the entire unlabeled
dataset is analyzed (classified) once, and that the instances
labeled with less certainty are not allowed to compromise the
classifier. The ensemble obtained at the end of this process
(after the unlabeled data is exhausted), decides the labels
for the test data in a similar fashion: predictions from the
individual classifiers are averaged to produce the final label.

STEO (Self-Training Ensemble Original) This variant is
inspired by the approach of Li et al. [8]. The top most
confident pseudo-labeled examples are added to the labeled
data of each sub-classifier. The original balanced classifiers
are maintaining their subsets balanced, as an equal number of
positive and negative instances augment the labeled subsets
after each iteration. In their approach, Li et al. used just two
instances (the topmost confidently labeled positive example
and the topmost confidently labeled negative example) to
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enlarge the initial labeled dataset. Then, they iterated the self-
training step 50 times and observed the performance variation
from one iteration to another. This differs from our approaches
because instead of classifying all the unlabeled data at every
iteration, we only classify a subsample of the unlabeled data,
and select the best instances to retrain with, while discarding
the rest.

STEM (Self-Training Ensemble Modified) This variant is a
modification of the original approach STEO. We are interested
in exploiting the unlabeled data as much as possible, especially
the positive instances that potentially exist therein. We use an
augmentation factor of 10, meaning that after each iteration,
we add 10 newly-labeled instances (from the selected sample)
to each class. In other words, the same 20 most confidently
labeled instances (10 positives and 10 negatives) are added
to the labeled subset of each self-trained Naı̈ve Bayes sub-
classifier. This will increase the labeled dataset at a faster
rate, and having more pseudo-labeled instances to train from
would potentially speed up the improvement in performance.
Basically, STEO is STEM with an augmentation factor of 1.
The rest of the ensemble variants that we use in this paper
(and are described next) use the same augmentation factor of
10, which we chose in order to speed up the learning process.

STEX (Self-Training Ensemble eXtended) In this variation,
each sub-classifier’s labeled subset is augmented with a new
pseudo-labeled set that is not balanced, but maintains the
class imbalance of the original dataset. Although we start
off with balanced sub-classifiers, during the semi-supervised
iterations their training datasets are augmented with 1-to-N
newly labeled examples (they all voted for), where N repre-
sents the imbalance degree. For example, if the dataset exhibits
an imbalance ratio of 1-to-50, we train 50 sub-classifiers on
balanced subsets obtained with the method proposed by Liu
et al [22]. After a self-training phase, where the ensemble
votes on new labels, each sub-classifier is augmented with
10 positive examples and 500 negative examples. Intuitively,
this approach will start off diverse enough and eventually will
adapt to the imbalance degree of the dataset, thus being able
to ultimately capture better the distribution from the test data
and achieve higher performance.

STEP (Self-Training Ensemble Positive) This approach is
a hybrid between our previous approach, STP (which was
specifically designed to address the imbalanced data problem
by adding only positive instances to the labeled dataset during
the self-training iterations [25]) and STEM (the ensemble ap-
proach of sub-classifiers trained on balanced subsets that vote
to add new instances during the semi-supervised iterations,
and that use an augmentation factor of 10).

STED (Self-Training Ensemble positive Distributed) This
is another newly proposed approach for the imbalanced data
problem in the context of semi-supervised learning of splice
site datasets. It is a combination of our previous findings
(the dynamic balancing [25]) and assumptions (maintaining
the diversity of the sub-classifiers during the semi-supervised
steps). STED is an ensemble of self-trained classifiers that aug-
ment their labeled subsets only with instances that have been

voted positive and, furthermore, the newly labeled instances
are distributed among the sub-classifiers such that the learners
remain different enough to capture distinct (or more diverse)
information, and, thus benefiting the ensemble more.

LBE (Lower Bound Ensemble) In order to compare the
semi-supervised ensemble variants to a supervised lower
bound, we created the corresponding ensemble supervised
approach, in which the same balancing technique is used
to create the subsets. Supervised Naı̈ve Bayes classifiers
are trained on the balanced subsets and the average of the
probabilities from the sub-classifiers represents the verdict of
the ensemble on a test instance. The unlabeled instances are
not utilized at all in this supervised approach.

IV. EXPERIMENTAL SETUP

Experiments are conducted on five imbalanced datasets from
a domain adaptation study [30]. Each dataset represents DNA
sequences from five organisms: C. elegans, C. remanei, P.
pacificus, D. melanogaster, and A. thaliana. Each sequence
contains 141 nucleotides and the dimer “AG”, which signals
the acceptor splice site, is fixed at position 61 in the sequence.
The datasets contain approximately 160,000 instances, with
the exception of the C. elegans dataset, which contains approx-
imately 120,000 instances. For each organism, approximately
1% of the instances are positive (true acceptor splice sites).
We used the feature vector representation from [25].

Our experimental setup is specifically designed to address
the following research questions: (1) Is supervised learning
aided by additional unlabeled data in the case of highly imbal-
anced datasets, or do the pseudo-labeled instances deteriorate
the classification performance? (2) How does the performance
of SSL algorithms based on ensembles of classifiers vary with
the class distribution ratio? (3) What is the most effective en-
semble variant when training classifiers on highly imbalanced
splice site datasets in a semi-supervised framework?

To simulate an SSL environment, we followed the approach
from [25]; for labeled data, we picked instances randomly and
for unlabeled data, we simply ignored the labels. To answer
the first question, we kept the labeled data to a minimum. We
randomly picked positive and negative examples, and ensured
the imbalance degree was maintained, which in general meant
that labeled instances represented considerably less than 1% of
the training dataset, as we wanted to use just enough labeled
instances to create the balanced subsets, but not more than 1%.
For the second and third questions, in order to observe how
the algorithms’ performance varies with the imbalance degree,
we re-sampled the original datasets to simulate different class
distributions. For every organism, we varied the proportion
of positive to negative instances from 1-to-5 to 1-to-99.
Classifiers are highly susceptible to the order in which the
data arrives, especially semi-supervised learners which iterate
through the unlabeled instances, therefore we built our datasets
incrementally, in the sense that larger datasets (with higher
data imbalance) were obtained by adding more instances to the
smaller datasets (with lower data imbalance) until the dataset
became the original set (with the imbalance ratio of 1-to-99).
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To test the performance of our algorithms and to avoid any
sampling bias, we used 10-fold cross validation. For each fold,
90% of the data was used in training (as labeled and unlabeled
instances) and the remaining 10% was used for testing. From
the 90% training, we picked labeled instances such that the
ratio was maintained and the labeled instances represented less
than 1% of the data. The cross-validation technique ensures
that each instance of the dataset is tested one time, and that
the test folds reflect the characteristics of the data.

Traditional evaluation metrics, such as accuracy or error
rate, are not suitable to judge the performance of imbalanced
learning results. For example, a learner that classifies all the
test instances as the majority class on a dataset with an
imbalance ratio of 1-to-99 achieves a 99% accuracy, obviously
meaningless. We evaluated our classifiers’ performance using
the area under the Precision-Recall Curve (auPRC), a more
appropriate assessment metric compared to the area under the
Receiver-Operating Curve (auROC) when undertaking prob-
lems with highly imbalanced datasets [31]. Since the minority
class of true acceptor splice sites is of interest, we concentrated
on this class and how the algorithms can identify positive
instances, therefore we used the auPRC value of the positive
class to determine and compare the quality our models.

V. RESULTS AND DISCUSSION

The results are presented in TABLE I. For easier interpre-
tation, we report the averaged values of the auPRC for the
positive class over the five organisms, as the trends are gen-
erally maintained for individual organisms. The first column
represents the imbalance degree of the dataset (positive-to-
negative ratios). The LBE column represents the supervised
lower bound against which we compare the SSL algorithms.

Imbal LBE STEO STEM STEX STEP STED

1-to-5 0.431 0.4292 0.4636 0.5514 0.535 0.5478
1-to-10 0.4122 0.4 0.3508 0.4862 0.4674 0.528
1-to-20 0.437 0.3762 0.239 0.4356 0.502 0.4692
1-to-25 0.4406 0.3726 0.189 0.3178 0.3876 0.4816
1-to-30 0.4316 0.3798 0.1624 0.2942 0.4134 0.488
1-to-40 0.4684 0.414 0.1342 0.3058 0.3844 0.4934
1-to-50 0.4694 0.3556 0.1264 0.2386 0.379 0.483
1-to-60 0.4876 0.358 0.1468 0.2086 0.3086 0.4756
1-to-70 0.4666 0.38 0.1044 0.1766 0.334 0.476
1-to-75 0.4716 0.3688 0.1702 0.24 0.3308 0.473
1-to-80 0.465 0.3354 0.132 0.1286 0.2812 0.4684
1-to-90 0.4722 0.358 0.125 0.1644 0.306 0.4626
1-to-99 0.445 0.3628 0.1276 0.18 0.2852 0.469

TABLE I: Averages of the auPRC values for the positive class
over the five organisms, when the class imbalance ratio varies
from 1-to-5 to 1-to-99 and the amount of labeled instances
represents less than 1%. LBE (Lower Bound Ensemble),
STEO (Self-Training Ensemble Original [8]), STEM (Self-
Training Ensemble Modified), STEX (Self-Training Ensemble
eXtended), STEP (Self-Training Ensemble Positive), STED
(Self-Training Ensemble positive Distributed). Emphasized
values represent improvements over the supervised LBE.

We start our discussion of the results by answering the
first research question from Section IV, which simply put
was “Does unlabeled data help?” The original STEO approach
always falls below the supervised lower bound but the other
variants improve upon it: STEM in the case of 1-to-5, STEX in
the case of 1-to-5 and 1-to-10, STEP in cases with imbalance
of up to 1-to-15, and STED, which almost always outperforms
the lower bound, most notably in the extreme case of 1-to-99.

The second research questions revolves around the ensemble
approaches. The only two approaches that do not degrade with
higher imbalance ratios and maintain a somewhat constant
value of auPRC are STEO (from [8]) and our proposed
approach STED. As opposed to STEO, which does not raise
above the supervised lower bound, STED seems to benefit
from the unlabeled data and produces higher auPRC values.
Surprisingly, STEM showed the worse performance. STEM is
mainly STEO but instead of augmenting the labeled set with
just two instances (the most confidently labeled one positive
instance and one negative instance), STEM is augmented with
20 instances (10 from each class). This behavior denotes that
the initial classifiers were misguided by unlabeled data and
since 10 times more misclassified instances were introduced,
the performance decreased just as drastic. The same pattern
was followed by STEX, which achieved a much better accu-
racy than STEO for datasets with milder degrees of imbalance.
However, STEX recorded the most abrupt decrease - not
surprising, since the extended version also incorporated more
negative instances during the iterations.

The answer to the third research question question is STED,
the most useful classifier in this set of experiments. Although
its performance increase over the lower bound was not sub-
stantial (3%), it is still a considerable improvement over the
other semi-supervised approaches (up to 10% above the next
best performance, that of STEP).

As a general trend, the semi-supervised algorithms’ per-
formance degrades as the datasets become more imbalanced.
For greater imbalance degrees (1-to-90, 1-to-99), even though
the initial supervised classifiers have more labeled data to
learn from in the early stages than the algorithms trained
on datasets with lower imbalance degrees (1-to-5, 1-to-10),
the performance degrades. This trend is expected because
the learning is impaired by a strong unevenness in the prior
distribution. On the other hand, the supervised algorithm
LBE shows an increase in auPRC values as the imbalance
degree increases. Generally, we observed that one of our
proposed methods, namely STED, had superior performance
to that of the other approaches, and was the only method
to achieve increased performance over the supervised lower
bound. The auPRC value for the positive class increased with
3% on average for all the imbalance degrees compared to
the supervised lower bound. For all the other semi-supervised
methods the unlabeled data proved to be detrimental.

VI. CONCLUSIONS

In this paper we propose several ensemble-based variants of
semi-supervised learning algorithms adapted to highly imbal-
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anced datasets and test their performance on five large splice
site datasets. One approach, STED (Self-Training Ensemble
positive Distributed), is producing the best results and its main
characteristics are: (1) the sub-classifiers in the ensemble must
maintain their diversity thus each adding different instances
retrieved from the unlabeled data; (2) the ensemble should
be dynamically balanced by only adding positive instances
in the semi-supervised iterations. These hypotheses lead to
a successful utilization of the unlabeled data. Our empirical
results show that with less than 1% labeled data, the proposed
method STED can successfully leverage the unlabeled data
and produce classifiers that outperform the supervised lower
bound in most cases, including the case in which the imbalance
degree is maximum (1-to-99), for an overall average of 3%.
Although not entirely “safe”, we have shown that the proposed
approach notably surpasses all the other semi-supervised vari-
ants, and can be considered a stepping stone towards further
improving such semi-supervised learning methods for datasets
where one class is severely underrepresented.

In future work, we consider using other types of base
learners (e.g., large margin classifiers) for the self-training and
possibly co-training algorithms. It is also of interest to explore
the behavior of SVMs in a transductive approach, as the results
from Kondratovich et al. [21] showed great potential for the
problem of protein classification from imbalanced datasets.
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