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Abstract—Recent advances in biotechnology have resulted in
large volumes of genomic and proteomic data leading to the
emergence of numerous in silico methods for annotation, such
as supervised machine learning approaches. Such algorithms,
however, require large amounts of labeled data for training.
In practice, labeled data is oftentimes limited because it is
difficult to obtain. Therefore, semi-supervised machine learning
is preferable, in which classifiers trained on limited amounts of
labeled data can be improved by exploiting the large amounts of
unlabeled data. In this work, we focus on transductive learning,
a special case of semi-supervised learning. A semi-supervised
algorithm builds an inductive model that generalizes well to
new, unseen (test) instances. In contrast, during the training
phase, a transductive algorithm has access to the (test) instances
that need to be classified, allowing advantageous utilization of
these points in order to reach the best separation function.
Compared to learning a classifier for use with future data, cassette
exon identification is a suitable application for transductive
learning, since the goal is to annotate a sequenced genome
for which a limited amount of labeled data is available. We
study the applicability of three popular transductive techniques
and their compatibility with various kernels to the binary DNA
classification problem of cassette exon identification. The results
of our experiments suggest that transductive learning is a useful
approach for assisting genome annotation.

I. INTRODUCTION

Supervised machine learning produces dependable classi-
fiers when large amounts of labeled data are available for
training. Because of expensive generation, however, labeled
data is usually scarce. Unlabeled data is easier to obtain as
a result of advancement in high throughput Next Generation
Sequencing (NGS) technologies. This scenario, in which lim-
ited amounts of labeled data along with considerably larger
amounts of unlabeled data are available, suggests the use of
semi-supervised learning (SSL), which is a learning paradigm
at the intersection of supervised and unsupervised learning.
SSL requires a small amount of labeled data and larger
amounts of unlabeled data in order to build classification tools
that perform better than models trained only on labeled data.
Improving supervised classifiers by leveraging unlabeled data
is a very appealing concept, although it does not always work
as intended: in practice, the unlabeled data can degrade a
classifier [1], [2]. Understanding whether or not unlabeled data

will enhance a supervised learning classifier for a particular
problem is still the focus of ongoing research [3], [4].

In a classic semi-supervised environment, a learner has
access to labeled and unlabeled examples during the training
phase, and the classifier must produce a classifier that can be
used to predict the class of future data points not previously
encountered. A subtype of SSL, called transductive learning,
aims to classify unlabeled data without generalizing to other
new, unseen examples. The goal of transduction is not to
produce an inductive model (as in supervised and SSL), but to
predict the labels of the unlabeled data to which the algorithm
has access during the training phase. This may be an advantage
for the algorithm, and transduction is sometimes viewed as an
“easier” case of semi-supervised learning.

Theoretically, transduction is particularly suitable for
genome annotation, in which a newly sequenced genome,
ready to be annotated, is typically available up front, along
with limited annotation. Vapnik introduced a popular large-
margin transductive approach, known as Transductive Support
Vector Machines (TSVM) [5]. TSVM has primarily been used
for protein-related problems in bioinformatics [6]–[8], with a
notable exception for promoter recognition [9].

One of the most popular graph-based transductive algo-
rithms is Label Propagation (LP), proposed by [10], in which
available labels are propagated across a graph, thereby resem-
bling the Markov random-walk algorithm. LP was originally
tested on the problem of recognizing handwritten digits, but
it has also produced successful results on problems related to
natural language processing (e.g., word sense disambiguation).
LP is one of the first methods to gain rapid popularity, and it
remains in use as a baseline for derivations of graph-based
algorithmic approaches.

A more recent transductive algorithm is the Adsorption
algorithm, a graph-based approach first introduced by Baluja
et al. [11] in the context of YouTube video recommendation.
As a variation of “Adsorption”, Talukdar and Crammer [12]
proposed the “Modified Adsorption” algorithm (MAD) and
used it for sentiment classification on Twitter data. Several
other problems have been addressed using MAD [13], [14],
but only a limited amount of work has been conducted on
biology-related classification problems, with the exception of
[15], who applied MAD to a gene prioritization problem.
We believe that MAD’s suitability for bioinformatics comes
form the fact that it is scalable to accommodate the large
amounts of data available in biology-related fields, and can978-1-4799-6926-5/15/$31.00 c©2015 IEEE
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also handle multiclass problems. The goal of this study is
to increase understanding of the strengths and limitations of
the three popular transductive learning algorithms (TSVM, LP,
and MAD) for DNA sequence classification, with concrete
applications to the problem of predicting a type of alternative
splicing, specifically cassette exons.

Alternative splicing, a naturally-occurring phenomenon first
observed in the late 1970s, increases proteome complexity
in eukaryotes. Alternative splicing occurs after transcription.
There several types of alternative splicing events, but in this
work we focus on alternatively spliced exons, also called
“cassette” or “skipped” exons. As illustrated in Figure 1, when
transcribing DNA into mRNA, some exons, called “constitu-
tive” exons, are always transcribed, while the “cassette” exons
can be skipped in some isoforms.

The identification of alternative splicing events, in particular,
“cassette” exons, is an essential step in the task of genome
annotation and can be addressed by conducting wet-lab exper-
iments. However, such experiments are time-consuming and
require expert involvement, and unfortunately computational
methods based on Expressed Sequence Tags (EST) and full
length cDNA are still expensive because constructing them
is difficult. Recently, RNA-Seq to genome alignments have
emerged [16], [17], but are not accurate enough (e.g., Cufflinks
only detects 44% of true alternative splicing events, as shown
in a recent study [18]).
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Fig. 1: Cassette versus Constitutive Exons: Exons 1 and 3 are
“constitutive” since they appear in all isoforms, while exons 2,
4, and 5 are “cassette” exons, because they are excluded from
some isoforms.

Supervised machine learning approaches have also been
implemented for the problem of predicting alternative splicing
events, including the prediction of cassette exons. In [19], the
task is formulated as a binary classification problem, where
the two classes are given by “cassette” (alternatively spliced)
exons and “constitutive” exons (i.e., exons that are always
transcribed). In [20], the focus is on predicting alternative
splicing events in humans. The authors used conserved infor-
mation between human and mouse, upstream and downstream
intronic sequence motifs, and length-based features in the
learning process. Specialized biological kernels that model
similarities between sequences have been used with SVM to

predict alternative splicing [20], [21].
To the best of our knowledge, no study has compared

transductive algorithms on a DNA sequence classification
problem; therefore our research focuses precisely on this
comparison. The contributions of this paper are threefold: (1)
We study and compare three transductive algorithms based
on two paradigms (large-margin and graph-based) in order
to evaluate the algorithms’ suitability for DNA sequence
classification. More specifically, we use TSVM, LP, and MAD
to predict cassette exons in Caenorhabditis elegans; (2) We
experiment with various data representations and kernels to
determine which of them exhibits stronger compatibility with
transductive methods. We utilize an additive kernel comprised
of the spectrum kernel or weighted degree kernel with shifts
on the actual sequence, along with a linear kernel on sequence
length features; (3) We study the effects of the amount of
labeled data on the performance of the transductive algorithms
considered.

The rest of the paper is organized as follows. In Section II,
we review relevant and related works and present the context
of our study, and explain the need for this research. We present
the algorithms in Section III, and data and similarity measures
used are described in Section IV. We enumerate research
questions that we want to address and outline the experimental
setting in Section V. The results are presented and discussed in
Section VI. Finally, we present our conclusions in Section VII,
where we also enumerate several directions we are interested
in pursuing as future work.

II. RELATED WORK

Transductive learning has been applied to a wide range
of domains, including text classification, sentiment analysis,
movie and video recommendation, natural language process-
ing, image and phonetic processing, and prediction or diag-
nosis of various events in medical fields. In bioinformatics,
transductive approaches have been successfully used primarily
for protein-related problems.

Shin et al. [6] proposed a method for combining multiple
graphs obtained from several independent and complementary
sources of information. The resulting combined graph was
used with spectral clustering to determine functional classes of
yeast proteins, a multiclass prediction problem. Weston et al.
[22] classified protein domains into SCP super families (SCP
stands for Structural Classification of Proteins). The authors
employed cluster kernels (bagged mismatch and neighborhood
mismatch kernels) to utilize unlabeled data and labeled data.
Kondratovich et al. [7] utilized TSVM for the problem of
molecule activity prediction.

Comparative studies of transductive algorithms have been
conducted for sentiment classification, including a recent study
by Yong et al. [23] at the document level, for underresourced
languages. The authors compared MAD and LP and ran exper-
iments on datasets from three domains (hotels, notebooks, and
books). The datasets consist of approximately 4,000 reviews,
out of which a balanced subset of 300 comprised labeled
instances, manually annotated in terms of sentiment polarity
(150 positive and 150 negative reviews). Yong et al. [23] also
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decreased the amount of labeled data (from 300 instances to
20 instances) in order to assess the algorithms’ behavior with
various amounts of labeled data. Results showed that MAD
outperformed LP. We conduct a similar study, but we compare
TSVM, LP, and MAD on a biological (DNA) classification
problem.

For DNA classification, purely SSL approaches, such as
Expectation Maximization, Self-training, and Co-training, have
been studied for the problem of predicting alternatively spliced
exons [24] and acceptor splice sites [25], [26]. However, the
collection of studies on purely transductive approaches is not as
rich; here we mention a notable exception from Kasabov et al.
[9], who used TSVM on the problem of promoter recognition
in a multispecies dataset.

Because transductive learning algorithms rely on similari-
ties, biological kernels are also relevant to our work. Special-
ized biological kernels have been proven to enhance classifica-
tion capabilities of supervised large-margin classifiers, for pro-
tein related problems. For example, Kuang et al. [8] used SVM
with profile-based string kernels from PSI-BLAST profiling
for the problems of protein classification and detecting remote
homology of proteins, in a supervised classification setting.
Rangwala and Karypis [27] designed two classes of kernels,
window-based and alignment-based, for SVM to be used for
the problem of detecting remote homologs and identifying
folds, respectively.

For supervised DNA sequence classification, Rätsch et al.
[19] created a biological string kernel, called the weighted
degree kernel with shifts, and used this kernel with SVM.
We also employ this kernel in our study but in a transductive
framework.

III. TRANSDUCTIVE APPROACHES STUDIED

In this section we describe the types of methods compared
in our study, with a focus on transductive learning and de-
termining which algorithm produces the best results. Many
popular transductive algorithms have different assumptions, but
in this study we will focus on one margin-based algorithm
in this study, namely TSVM (Section III-A) and two graph-
based algorithms, LP (Section III-B) and MAD (Section III-C).
Other transductive approaches such as Learning with Local
and Global Consistency [28] and Label Matrix Normalization
[29], did not produce satisfactory results on our data, and were
therefore excluded from this paper.

A. Transductive Support Vector Machines (TSVM)
The TSVM algorithm [5] is an extension to the classical

SVM algorithm. The “low density separation” assumption
states that points residing in the same cluster share the same
label and that the decision boundary should reside in a low
density region, known as a large margin. This separating hy-
perplane maximizes the margin while minimizing the training
error, as a penalty term for misclassification must be introduced
for the non-linearly separable cases. Because TSVM optimiza-
tion is an intractable problem, Joachims [30] proposed a solu-
tion resembling the classical “self-training” approach because
it uses the completely supervised SVM built on the labeled

data, and then “switches” labels of the unlabeled (test) data
in order to optimize the objective function while consistently
classifying the originally labeled examples. In other words, the
new boundary must be consistent with the labeled data. In this
paper, we use SVMLight [30] implementation of TSVM that
was designed to accommodate problems with datasets of no
more than a few thousand examples.

Similar to SVM, TSVM can benefit from the “kernel
trick”, in which the traditional dot product that appears in
the original SVM optimization problem is replaced by a
nonlinear kernel function, which provides an alternative to
measuring the similarity between two instances. Instead of
utilizing the dot product of the instances’ vector representation,
the kernel models different notions of similarity that are more
appropriate for the problem studied. This kernelized version
that transforms the representation of instances to a higher
dimensional space allows customized solutions to calculate
similarities between instances. We experiment with various
sequence representations and similarity kernels, as explained
in Section IV. The same representations and similarity kernels
are used to build similarity (affinity) matrices for the graph-
based approach.

B. Label Propagation (LP)
In graph-based methods, all available data, including la-

beled instances {(x1, y1), ..., (xl, yl)} and unlabeled (or test)
instances {(xl+1, yl+1), ..., (xu, yu)} where usually l� u, are
represented as nodes in an undirected graph. Formally, the
graph is defined as G = {V,E,W}, where V represents the
set of nodes (vertices), E = V × V is the set of edges that
represents every pair of nodes, and W is the set of weights
associated with the edges. Weights on the edges reflect the
similarities between the connected nodes. The “smoothness”
assumption of graph-based methods states that because nodes
connected by a strong edge are very similar, the nodes are
more likely to share the same label. LP [10] is a transductive
algorithm that spreads labels of the originally labeled nodes
throughout the graph in order to classify unlabeled nodes,
which receive a class distribution in the form of “soft” labels
(probabilities). The elements of the vector Yv maintain the
node’s v prior class distribution, and are different from zero
if the node is labeled, and null if the node is unlabeled. The
second vector Ŷv is initialized to zero and its dimensions get
assigned values for each class, as inferred by the algorithm.
The smoothness assumption can be mathematically formulated
as the optimization problem from Equation (1), where labels ŷi
and ŷj of nodes vi and vj , respectively, should be similar for
a large Wij in order to minimize the function, while ensuring
that the original labels are maintained.

min
∑
i,j

Wij(ŷi − ŷj)2, s.t. Ŷl = Yl. (1)

The function from Equation (1) can be solved iteratively, using
Algorithm 1, which utilizes the nodes’ label distribution given
in the form of a matrix Y = (l + u)× C, where l represents
the number of labeled examples, u is the number of unlabeled
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examples, and C is the number of classes. Next, a probabilistic
transition matrix T is computed such that the probability of
jumping from node i to node j is

Tij =
wij∑l+u
k=1 wkj

(2)

After the initialization of Ŷv with class labels for Ŷl and
arbitrary values for Ŷu, actual propagation occurs (line 4 in
Algorithm 1). The algorithm continues with re-setting of the
initial labels (line 5 in Algorithm 1) in order to reinforce the
labels of the originally labeled training data. This operation
is referred to as “clamping” of the labels. The iterations are
then repeated until convergence (i.e., until the propagation is
complete and the labels do not vary much between iterations).

Algorithm 1 Label Propagation (LP)

Require: Similarity Graph G = {V,E,W}, Label Matrix Yv
1: Compute T = D−1W , where D is diagonal degree matrix
2: Initialize Ŷv = Yv
3: repeat
4: Ŷv = T Ŷv
5: Ŷv = Yv, (v ∈ Vl) “Clamp” the original labels
6: until Ŷv converges
7: return Ŷv , the estimated probability distribution over the

labels of vertex v

C. Modified Adsorption (MAD)
The original Adsorption [11] algorithm resembles the con-

cepts of LP [10] and also [31]. MAD [12] can be considered a
“random walk”-type approach that propagates labels through-
out the graph in a more controlled manner, by the means of
three probabilities: (1) injection probability, pinjv , which returns
the initial Yv label distribution of a node; (2) continuation
probability, pcontv , that continues to propagate the label from
v onto the next node v′ with probability proportional with the
similarity between the two nodes, given by:

Pr[v′|v] = Wv′v∑
u:(u,v)∈EWv′v

(3)

and (3) termination (or abandonment) probability, ptermv that
terminates the propagation process for a node. The condition
is that pinjv +pcontv +ptermv = 1.

LP and MAD differ from each other in (1) that MAD does
not reinforce the initial class distribution carried by the training
labeled data, thereby presumably dealing with potential noise
in the original label data and (2) that MAD can express
uncertainty regarding classification through the means of a
dummy label that acts as an extra “class” initialized to zero
in the beginning and later assigned the default abandonment
probability when/if the label propagation is abandoned at a
given training phase (iteration).

The actual class distribution of every node v is stored in
Yv , which is a (C + 1)-dimensional row vector enhanced to
hold the extra dummy variable ν. C is the number of classes.
Similar to the notation from LP, the predicted (inferred) class
distribution of every node is stored in Ŷv . MAD also utilizes
a (C+1)-dimensional row vector r whose elements are set to
zero, except for the extra element holding the dummy label,
which is set to 1 (rl = 0 for l 6= ν, rν = 1).

MAD, an extensions to the original Adsorption algorithm,
has a well-defined optimization function (Equation 4) that can
be solved iteratively in matrix form using the Jacobi method
(Algorithm 2). The first term of the cost function captures
the constraint that the inferred labels should not significantly
differ from the original labels. The second term ensures the
“smoothness” assumption and the third term is a regularizer
that discourages uncertainty. The importance of each term is
controlled by three hyperparameters, µ1, µ2, and µ3.

min
∑
v

[µ1

∑
k

pinjv (Yvk − Ŷvk)2 + (4)

µ2

∑
v

∑
j

pcontv wvj(Ŷvk − Ŷjk)2 +

µ3

∑
k

ptermv (Ŷvk −Rvk)2]

Algorithm 2 Modified Adsorption (MAD)

Require: Similarity Graph G = {V,E,W}, Label Matrix Yv ,
Probabilities pinjv , pcontv , ptermv , ∀v ∈ V

1: Initialize Ŷv = Yv
2: repeat
3: Dv =

∑
uWuvŶv∑
uWuv

4: for v ∈ V do
5: Ŷv = pinjv × Yv + pcontv ×Dv + ptermv × r
6: end for
7: until Ŷv converges
8: return Ŷv , the estimated probability distribution over the

labels of vertex v

In this work, we use the Junto implementation of LP
and MAD, from https://github.com/parthatalukdar/ junto and
we maintain the default parameters. All three transductive
approaches explored in this work require a similarity mea-
surement, in the form of a kernel function, for each pair of
instances, such as in the case of TSVM, or they require a
similarity measurement in the form of a similarity matrix, as
in the case of the graph-based MAD and LP algorithms.

IV. DATA REPRESENTATION AND SIMILARITY MEASURES

In our experiments, we use genomic data from the model or-
ganism Caenorhabditis elegans in our experiments. The dataset
was published by Rätsch et al. [19] and it is publicly available
at http://people.kyb.tuebingen.mpg.de/raetsch/RASE.old/ . The
dataset contains 3,018 nucleotide sequences of exons and
adjacent introns, i.e., each instance is in the form left intron–
exon–right intron, as illustrated in Figure 2. Out of these 3,018
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instances, 487 are labeled as alternatively spliced, meaning
that the flanked exon is a cassette exon that can be skipped
in some isoforms. The remaining 2,531 sequences are labeled
as constitutive, meaning that the exon is present in all known
isoforms. The data was labeled based on alignments between
ESTs and genomic DNA.

Given the intron-exon-intron sequence, two types of fea-
tures are readily available: (1) content-based features obtained
directly from the DNA sequence, and (2) length-based numeric
features obtained from the lengths of the exons and their flank-
ing introns. Accordingly, two types of similarity scores can be
captured by string kernels and numeric kernels, respectively.
Because kernels are additive, these two scores can be added,
to more accurately reflect the overall similarity between two
instances. In our study, we experiment with three different
ways for capturing content-based similarity at the sequence-
level using string kernels, as described below. For lengths, we
always use a linear kernel that computes the dot (inner) product
between numeric features. Along with the dataset, Rätsch et
al. [19] also made available length features associated with the
instances.

Left Intron Exon Right Intron

400nt

 A G

Length Features Length Features Length Features

 G T

Content FeaturesContent Features

400nt

Fig. 2: Example of an instance from the dataset in the form of
intron-exon-intron. Content-based features are generated from
400-nt windows around the splice sites, while length features
are obtained from the lengths of the exons and flanking introns.

Length features are obtained directly from [19] in which
lengths of each upstream intron, exon and downstream intron
(of every sequence in the set) were used to generate 30-
dimensional logarithmically spaced vectors for a total of 90
features per instance, corresponding to the three lengths. The
set of length features also includes 3-dimensional vectors that
characterize the frame of the stop codon, resulting in 15
additional features for a total of 105 length features (LG) per
instance. Labels of the instances were not used during the fea-
ture generation process. The following sections describe how
we used the string kernels to capture DNA-level similarities.

A. Weighted Degree Kernel with Shifts (WDS)
The similarity between two DNA strings using the Weighted

Degree kernel with Shifts (WDS) [19] is given by the count
of co-occurrences of exact k-mers at correspondent (exact or
shifted) positions in the sequences, where k ∈ {1..degree},
and whose weights are controlled by β coefficients, with β
dependent on the size of k. In order to utilize WDS, the DNA
sequences must have equal lengths. Because most splicing

regulatory information is typically aggregated in the proximity
of splice sites, the WDS is applied on 400nt windows centered
around the acceptor and donor splice sites in regions upstream
and downstream of the exon. The more sequence overlap that
exists close to the splice site, the higher the score captured by
the WDS. Leveraging the additive property of kernels, the two
score values that correspond to donor and acceptor sites are
then added; the combined kernel reflects the overall sequence
similarity. For more details regarding WDS, the reader is
referred to [19].

B. K-Spectrum Kernel (k-SK)

The k-Spectrum Kernel (k-SK) is a linear kernel introduced
in [32] for strings; we combine it with the linear kernel for
length features. The Spectrum Kernel, designed for protein
classification using SVM, is similar in nature to the feature
vector representation of sequences because it describes the
content of a sequence, in terms of substring frequencies.
However, it is ignorant to the order or position of such
occurrences. In order to calculate the pairwise similarity of
two instances (DNA strings), the k-SK uses all subsequences
of a fixed length k that occur throughout the instance. If
subsequences co-occur frequently throughout two DNA
strings, their dot (inner) product under the kernel will be
large. The intuition is that the more subsequences two DNA
strings have in common, the more likely they are to be
similar and share the same biological functions. Biological
signals are relatively short, usually 6-14 nucleotides long. We
use the Spectrum Kernel with length k = 6 denoted 6SK
because a majority of the biological motifs described next are
6-nucleotides long. Other studies of exonic splicing regulators
have also focused on hexamers [33], [34].

C. Motif-Spectrum Kernel (MSK)

WDS and SK can be used if there is no prior knowledge
about biologically significant motifs (that have an influence on
the problem of interest) because WDS and SK use all possible
occurrences of subsequences of variable length (in the case of
WDS) or fixed length (in the case of SK) to compute similari-
ties. In order to better understand how well “unbiased” kernels
capture sequence similarity in a transductive framework, we
use the Spectrum Kernel in a slightly different manner. Instead
of using all occurrences of k-length subsequences, we use
only a selected subset of motifs recognized to have biological
significance, and we omit the rest of the subsequences. In
other words, we only account for biological motifs, known as
splicing regulators, established to work as signals responsible
for the occurrence of alternative splicing and potentially result
in good classification performance. We denote this kernel as
Motif-Spectrum Kernel, MKS.

Biologically relevant signals, such as splicing regulators, can
occur in exons and introns. The ones that occur in exons are
called Exonic Splicing Enhancers (ESE), while those occurring
in introns are called Intronic Regulatory Sequences (IRS). We
use 45 ESE hexamers (6-nucleotide long) derived in [35] for
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the Caenorhabditis elegans dataset. The set of IRS motifs [36]
was obtained using comparative genomics in nematodes based
on the observation that intronic sequences that are relevant
for alternative splicing are highly conserved among closely
related species. In order to form the set of IRS motifs, we
combined the upstream and downstream motifs and removed
duplicate motifs, resulting in a total of 165 IRS motifs assumed
to be informative for alternative splicing. The class label was
not used in any of these procedures, and repetitive regions
were not specifically addressed. A total of 205 biological
motifs with variable lengths were present. Their usefulness in
a purely semi-supervised framework was reported in [24], and
we anticipate that its quality will also aid transduction.

V. EXPERIMENTAL SETUP

In this work, we investigate the performance of transductive
algorithms TSVM, LP, and MAD on the binary classification
problem of predicting cassette exons. Our experimental setup
is designed to address the following research questions:

1) What is the most effective transductive algorithm for the
problem of identifying cassette exons based on DNA
sequences?

2) How does the performance of the transductive algo-
rithms vary with the amount of labeled data?

3) What is the most useful sequence representation and
similarity measure (or kernel) when classifying in-
stances transductively?

A. Evaluation
We used 5-fold cross-validation to avoid sampling bias and

to be consistent with [19]. Furthermore, in order to use the
tuned parameters of the Weighted Degree kernel with Shifts
(WDS), we utilized identical splits from the supervised study
conducted on the same dataset as [19]. In order to simulate
a transductive environment, we deliberately hide some of the
labels at random.

In general, the effect of the labeled data on the classification
ability, in semi-supervised and transductive frameworks, is
far more significant than the effect that the same amount of
unlabeled data would have [30]. In order for the unlabeled
instances to have an observable impact, they must signifi-
cantly outnumber the labeled instances. Therefore, we limit
the amount of labeled data to 20% of the total dataset, and
the test (unlabeled) instances represent the remaining 80%.
In order to observe variation in the algorithms’ performance,
we also decrease the labeled data from 20% (approximately
600 instances per fold, on average) to 5% (approximately 150
instances per fold, on average), by discarding some instances
at random, while the test dataset remains the same 80%
(approximately 2,415 instances per fold, on average).

Because our dataset is relatively imbalanced (with approx-
imately 5 times more “constitutive” instances compared to
“cassette” instances) – the accuracy of the predictions would
not reflect the quality of the classifiers [37]. Therefore, we
report the performance in terms of area under the Receiver
Operating Characteristic curve (auROC) [38], averaged over 5
folds, and the afferent variance.

VI. RESULTS

We present our results in Table I. The auROC values em-
phasized in bold font represent the best values obtained by an
algorithm for a given amount of labeled data. The colored cells
highlight values of the best result overall for a given amount
of labeled data. In the first column, the percentages refer to
the amount of labeled data used for training the algorithms.
The three groups of experiments represent the performances of
TSVM, LP, and MAD algorithms using each of the three data
representations (and corresponding kernels): (1) the Weighted
Degree kernel with Shifts (WDS) for the DNA sequence along
with the Linear Kernel (LK) for the Length Features (LG), (2)
the 6-Spectrum Kernel (6SK) capturing 6-mers along with the
Linear Kernel (LK) for the Length Features (LG), and (3) the
M -Spectrum Kernel (MSK) for the biologically relevant motifs
and the Linear Kernel (LK) for the Length Features (LG).

We discuss the results by answering the research questions.
1) What is the most effective transductive algorithm for

the problem of identifying cassette exons based on DNA
sequences? Empirical results of our study are encouraging,
showing that from limited amounts of labeled data, the perfor-
mance of transductive classifiers reaches high auROC values
(from 0.903 to 0.942 for various amounts of labeled data).
These values are comparable to the ones from our previous
study of purely semi-supervised algorithms for this problem
[24], however, a direct comparison is not possible since the
unlabeled and test sets differ in semi-supervised learning from
transductive, where the unlabeled data is the actual test data
to predict. Overall, TSVM performs better than MAD and LP,
especially when trained on smaller amounts of labeled data
(5% to 15%). However, MAD more advantageously utilizes
the 20% labeled instances.

2) How does the performance of the transductive algorithms
vary with the amount of labeled data? As expected, the
amount of labeled data is a deciding factor for training quality
classifiers, and auROC values for all algorithms generally
increase with the increase in the amount of labeled data. The
trends from our study are consistent with the trends reported
on the task of sentiment classification [23].

For the 6-mers representation, MAD and LP recorded
more rapid increases in performance from increasingly larger
amounts of labeled data. The classification performance im-
proved from 0.621 auROC in the case of 5% labeled data to
0.942 auROC in the case of 20% labeled for MAD, and from
0.615 auROC to 0.864 auROC in the case of LP. TSVM is
not as sensitive to the amount of labeled data, and variations
are not as abrupt as for graph-based approaches. However, for
6-mers and motifs, TSVM records a counterintuitive decrease
in performance at 15% labeled data, most likely due to an
erroneously found hyperplane, unrepresentative of the whole
labeled data, also suggested by slightly higher variance. This
is understandable since TSVM relies on support vectors found
in the low density region, as opposed to graph-based methods
that utilize a diffusion approach to propagate labels.

3) What is the most useful sequence representation and
similarity measure (or kernel) when classifying instances
transductively? WDS is particularly suitable for MAD and
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TSVM LP MAD
WDS+LK 6SK+LK MSK+LK WDS+LK 6SK+LK MSK+LK WDS+LK 6SK+LK MSK+LK

DNA+LG 6MERS+LG Motifs+LG DNA+LG 6MERS+LG Motifs+LG DNA+LG 6MERS+LG Motifs+LG

5% 0.777±4.9E-4 0.614±3.9E-4 0.903± 1.9E-4 0.800± 6.3E-4 0.615± 4.6E-4 0.534±93.3E-6 0.828±39.0E-4 0.621± 4.9E-4 0.742±2.0E-4

10% 0.811±3.6E-4 0.652±4.5E-4 0.916±59.6E-6 0.810±71.4E-6 0.698± 6.3E-4 0.565±14.3E-6 0.828± 7.9E-4 0.729± 3.3E-4 0.781±4.3E-4

15% 0.838±3.7E-4 0.616±7.0E-4 0.887± 1.3E-4 0.801± 3.5E-4 0.815±15.1E-4 0.596±37.2E-6 0.830±37.9E-4 0.873± 1.6E-4 0.830±3.5E-4

20% 0.858±4.5E-4 0.700±3.4E-4 0.926±94.8E-6 0.814±14.1E-6 0.864±70.9E-6 0.612± 1.7E-4 0.888± 4.5E-4 0.942±32.2E-6 0.835±3.5E-4

TABLE I: AVERAGES OF AUROC VALUES OVER THE 5 FOLDS AND THE CORRESPONDING VARIANCE, WHILE VARYING THE
AMOUNT OF LABELED DATA FROM 5% TO 20%, AND MAINTAINING A FIXED TEST SET OF 80%. THE ALGORITHMS ARE
TRANSDUCTIVE SUPPORT VECTOR MACHINES (TSVM), LABEL PROPAGATION (LP), AND MODIFIED ADSORPTION (MAD).
THE FIRST SIMILARITY MEASURE USED IS THE WEIGHTED DEGREE KERNEL WITH SHIFTS (WDS) FOR THE DNA SEQUENCE
ALONG WITH THE LINEAR KERNEL (LK) FOR THE LENGTH FEATURES (LG). THE SECOND SIMILARITY MEASURE IS THE
6-SPECTRUM KERNEL (6SK) CAPTURING 6-MERS ALONG WITH THE LINEAR KERNEL (LK) FOR THE LENGTH FEATURES
(LG). THE THIRD SIMILARITY MEASURE IS THE M -SPECTRUM KERNEL (MSK) FOR THE EXONIC SPLICING ENHANCERS
AND INTRONIC REGULATORY SEQUENCES (MOTIFS) ALONG WITH THE LINEAR KERNEL (LK) FOR THE LENGTH FEATURES
(LG). THE VALUES EMPHASIZED IN BOLD FONT REPRESENT THE BEST PERFORMANCE RECORDED BY AN ALGORITHM
FOR A GIVEN AMOUNT OF LABELED DATA, AND THE COLORED CELLS HIGHLIGHT THE VALUES OF THE BEST RESULTS
OVERALL, FOR A GIVEN AMOUNT OF LABELED DATA.

LP when learning from limited amounts of labeled data and
somewhat useful for TSVM when additional labeled data is
available. The 6SK is most appropriate for MAD, which,
compared to all three algorithms, seems to be least suscep-
tible to noise, indicated by the fact that when using 6-mers,
which probably contain more noisy features than the other
representations, MAD achieves better results than TSVM and
LP. MKS (biological motifs) along with the length features are
the most helpful for TSVM, possibly because TSVM is able
to locate a more accurate hyperplane in the space rendered
by informative features (i.e., biological motifs established as
relevant to alternative splicing) since they are fewer than
the 6-mers, which render data to a much higher dimensional
space, thereby increasing the difficulty in identifying a good
separation.

For 6-mers, TSVM records its worst performance as it is
unable to find a correct separating hyperplane in the space
generated by these features, possibly due to an unnecessarily
high dimensionality (20 times higher than the motifs; 4.2K 6-
mers vs 210 motifs). Because MAD has more more features
available in the 6-mers set, a greater amount of common infor-
mation could be propagated among the instances. However, if
some of the information in the 6-mers set is noisy, the labeling
becomes erroneous, since strong edges could connect positive
instances to negative instances. This can potentially occur for
small amounts of labeled data (e.g., 5% and 10%). However,
for relatively larger amounts of labeled data, (e.g., 15% and
20%), the 6-mers can propagate the labels more accurately.
For LP, the best performance is recorded for 6-mers, when
the algorithm is presented with relatively larger amounts of
labeled data (15% and 20%).

As opposed to TSVM, MAD records unsatisfactory results
from MSK (the motif representation), possibly due to the fact
that there are only 210 motifs available, and they don’t capture
overall sequence similarity as well as the set of all 6-mers used
by the 6KS, or the various-length matches captured within

close proximity of the splice sites by the WDS. Furthermore,
a smaller set of motifs could lead to higher-degree nodes
which are discouraged in MAD, hence the correct label is
not propagated along the connected nodes. For LP, the motif
representation is the least compatible.

VII. CONCLUSIONS

In this study, we investigate the applicability of transductive
approaches to DNA sequence classification. The case study of
our work is the problem of discriminating between cassette
(or alternatively spliced) and constitutive exons. Experimental
results suggest that transductive learning is a useful approach
for addressing DNA sequence classification tasks, but we
should note that it may be possible to observe different trends
for different problems.

We found that biologically relevant features are better ex-
ploited by the discriminative nature of the TSVM algorithm,
which is able to find a good separation boundary in the space
defined by biological motifs. However, when such features
are unavailable, the k-Spectrum Kernel is more appropriate
for graph-based approaches if a reasonable amount of labeled
data is available. Although the best classification performance
came mostly from TSVM, this is not a feasible solution when
managing massive amounts of data, comprised of more than a
few thousand instances. However, MAD is particularly suitable
for “big data” and could solve problems posed by larger
datasets. Similar to previously reported results [23], MAD
outperformed LP on all cases.

In future work, we plan to address other DNA sequence
classification problems and evaluate graph-based algorithms
on more ample datasets (with hundred thousands instances).
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