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LEARNING HETEROGENEOUS ENSEMBLES

REINFORCEMENT LEARNING (RL) FOR ENSEMBLE SELECTION (ES)
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Sample target problem: Splice site prediction

Workflow used in our experiments.

RESULTS:
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• RL ensembles are competitively predictive
with the much larger ensembles consisting of
all available base predictors, while being
more parsimonious.
(Stanescu and Pandey, PSB 2017)

• Ensemble diversity, measured appropriately,
can be incorporated to help the RL-based
framework build even more accurate and
parsimonious ensembles, at nearly only 30 −
40% of the complete ensemble size.
(Stanescu and Pandey, arXiv 2018)RL Strategies for ES

Balance between ensemble performance and diversity:
• no diversity à no improvement
• too much diversity à low performing ensemble

We have designed several search strategies focused on: 

Reinforcement Learning
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Implementation available: 

https://github.com/GauravPandeyLab/lens

Problem C. elegans D. melanogaster P. pacificus C. remanei A. thaliana

#Features 141 141 141 141 141

#Positives 1,598 997 1,596 1,600 1,600

#Negatives 158,150 99,003 156,326 157,542 158,377

Total 159,748 100,000 157,922 159,142 159,977

IDEA: A novel ensemble selection approach based on reinforcement learning, which provides a
systematic way of exhaustively exploring the many possible combinations of base predictors that
can be selected into an ensemble.
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• Explore

• Learn a policy

• Exploit

• Possible actions

RL search strategy
auESC

size_ratio

@60

size_ratio

@120

size_ratio

@180

perf_ratio

@60

perf_ratio

@120

perf_ratio

@180

RL_greedy 0.647 0.761 0.676 0.618 0.993 0.998 0.999
RL_pessimistic 0.647 0.497 0.292 0.195 0.999 0.987 0.998

RL_backtrack 0.545 0.115 0.069 0.036 0.818 0.853 0.803
RL_diversity_cosine 0.657 0.418 0.368 0.335 1.010 1.012 1.012

RL_diversity_euclidean 0.650 0.389 0.358 0.326 0.990 0.998 1.008
RL_diversity_correlation 0.654 0.456 0.357 0.316 0.996 1.011 1.008

RL_diversity_yule 0.648 0.772 0.642 0.647 0.994 0.998 0.995
RL_diversity_kappa 0.647 0.995 0.995 0.996 0.995 0.995 0.996
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Statistics for the performance of RL-selected ensemble shown above. The ratios of the sizes and performances (perf) of the ensembles produced by
the various RL algorithms to those of the Full Ensemble (auESC=0.652) are shown at representative initial base predictor set sizes of 60, 120, and 180.

Performance of the diversity-incorporated
RL-based ensemble selection algorithms
[2], as well as those proposed in our
previous work [1] on a variety of splice site
prediction datasets.

Variation of ensemble performance with increasing 
number of initial base predictors (C. remanei)

• performance
(Stanescu and Pandey, PSB 2017)

• diversity 
(Stanescu and Pandey, arXiv 2018)

• Selecting a parsimonious set of 
models into an ensemble can 
further advance predictive 

performance and interpretability

• Biomedical data are abundant.
• Systems biology and machine 

learning can generate predictive 

models from data.

• Heterogeneous ensembles

can enhance effectiveness of 
predictive modeling
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