Integrating heterogeneous predictive models using Reinforcement Learning

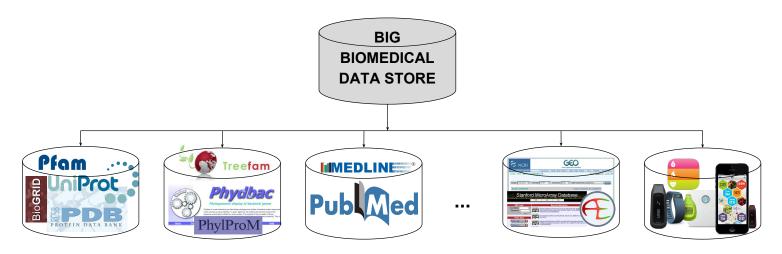
Ana Stanescu¹ and Gaurav Pandey²

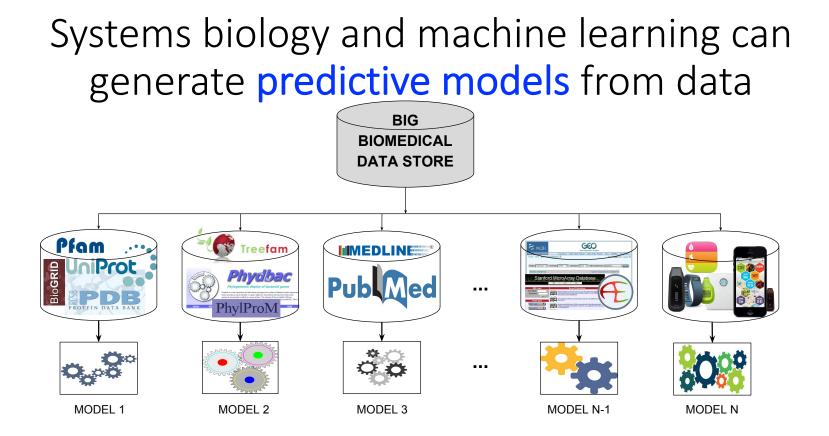
¹Department of Computer Science, University of West Georgia, Carrollton, GA, USA

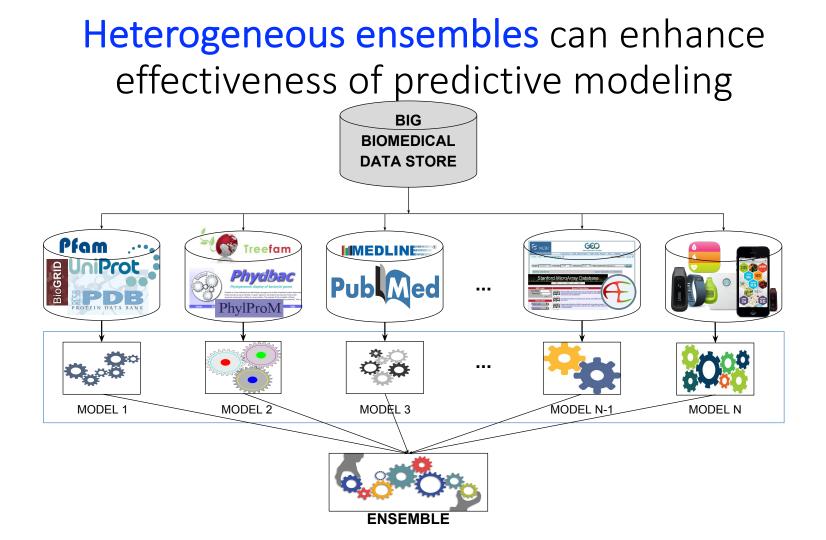
²Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA

* Partially supported by the NIH BD2K Program

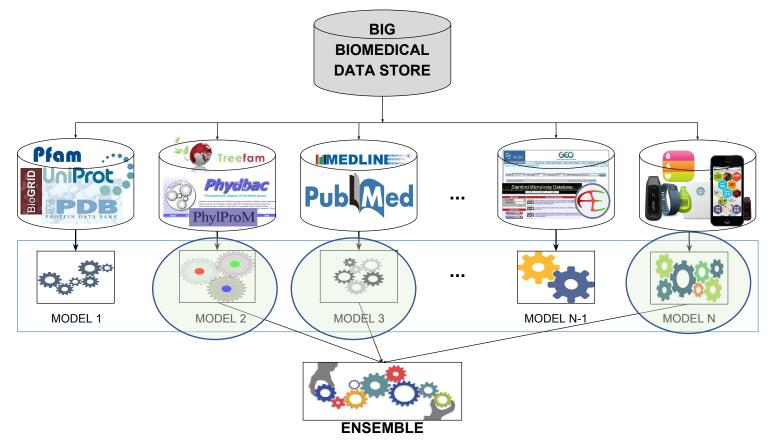
Biomedical data are abundant



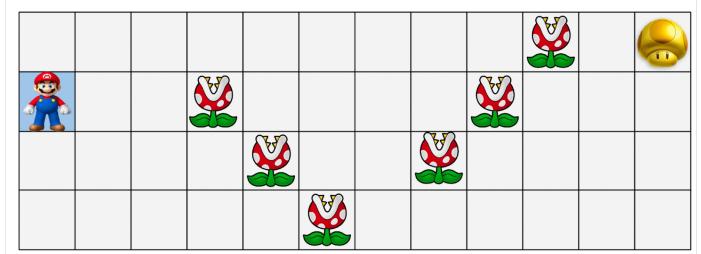




Selecting a parsimonious set of models into an ensemble can further advance predictive performance and interpretability

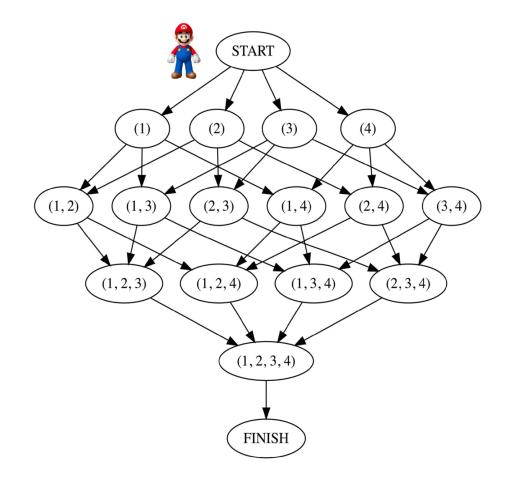


Reinforcement Learning: searching a large structured **environment** with **rewards** to find an **optimal path** (behavior) to reach the goal



An agent learns by interacting with its environment through "exploitation-exploration".

Ensemble selection using Reinforcement Learning



Reward functions can be formulated in terms of ensemble performance and/or diversity

Fine balance between ensemble performance and ensemble diversity

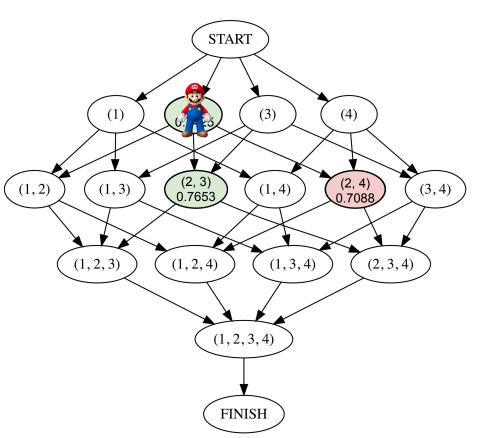
We have designed several search strategies focused on:

• performance

(Stanescu and Pandey, PSB 2017)

• diversity

(Stanescu and Pandey, arXiv 2018)



Target problem and evaluation methodology

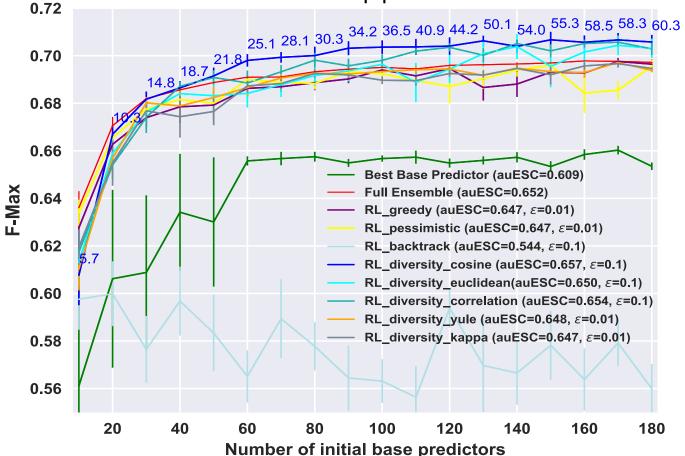
• Predict splice sites in various organisms based on nucleotide positional match representation using several public datasets.

Intronic Nucleotides Exonic Nucleotides —>	Class
ACATGCTA ATCGATCTAG GGATGCTACATCGCGAT ATCGATCTC	+
61 st Position	1
141 Nucleotides	 •

Problem	C. elegans	D. melanogaster	P. pacificus	C. remanei	A. thaliana
#Features	141	141	141	141	141
#Positives	1,598	997	1,596	1,600	1,600
#Negatives	158,150	99,003	156,326	157,542	158,377
Total	159,748	100,000	157,922	159,142	159,977

• 10 bagged versions of 18 different classifiers: 180 base classifiers in a 5-fold cross-validation setup.

Performance of ensembles selected using RL and other approaches



Conclusions

- Reinforcement learning-driven ensembles are **competitive in predictive performance to** larger ensembles consisting of all base predictors, while being substantially smaller, *i.e.*, **more parsimonious.** (<u>Stanescu and Pandey, PSB 2017</u>)
- Ensemble diversity, measured appropriately, can build even more accurate and parsimonious ensembles. (<u>Stanescu and Pandey, arXiv 2018</u>)
- Implementation available: https://github.com/GauravPandeyLab/LENS
- Future Work
 - Test the RL ensemble framework on larger datasets, including non-biomedical ones.
 - Develop more efficient (parallel) implementations of the framework.

Acknowledgements

- NIH Grant R01-GM114434
- Pandey Lab at Mount Sinai
- Minerva supercomputing team at Mount Sinai
- Computer Science Department at UWG

Thank you!