Lemma 1. Let $\triangle ABC$ be a triangle and let D and E be the midpoints of sides AC and BC. Then segment DE is parallel to segment AB. Conversely, let D be the midpoint of segment AC and E any point on segment BC. If DE is parallel to segment AB, then E is the midpoint of segment BC. (See Figure 1.)

Figure 1: Figure for Lemma 1

Proof. Let $\triangle ABC$ be a triangle and let points D and E be the midpoints of segments AC and BC. Extend DE past E to a point F so that DE is congruent to EF and construct segment BF. See Figure 2. Since D and E are the midpoints of segments AC and BC, respectively, we have AD is congruent to CD and BE is congruent to EC. Since the vertical angles $\angle CED$ and $\angle BEF$ are congruent, we have that triangles $\triangle CED$ and $\triangle BEF$ are congruent by SAS. Hence, CD and BF are congruent. By the transitivity of congruence, AD and BF are congruent.
Secondly, since $\triangle CED$ and $\triangle BEF$ are congruent, $\angle CDE$ is congruent to $\angle BFE$. Since these two angles are alternate interior angles with respect to the transversal DF, it follows that segments AD and BF are parallel.

Figure 2: Construction for Lemma 1

Construct segment BD. Since BD is a transversal to the parallel segments AD and BF, $\angle FBD$ and $\angle ADB$ are congruent.

Since AD and BF are congruent, BD is congruent to itself, and $\angle FBD$ and $\angle ADB$ are congruent, triangles $\triangle ABD$ and $\triangle FDB$ are congruent by SAS. Hence, $\angle ABD$ and $\angle FDB$ are congruent. Since these are alternate interior angles with respect to the transversal BD and the segments DE and AB, we see that these two segments must be parallel.

Conversely, suppose D is the midpoint of segment AC, E is a point on BC, and DE is parallel to segment AB.

Since $\angle CDE$ and $\angle CAB$ are corresponding angles with respect to the transversal AC, they are congruent. Angle $\angle C$ is congruent to itself, so triangles $\triangle ABC$ and $\triangle DEC$ are similar. It follows that

$$\frac{CE}{BC} = \frac{CD}{AC} = \frac{1}{2}.$$

It follows that E is the midpoint of segment BC.

Lemma 2. Let $\triangle PQR$ be a right triangle with right angle at Q. Let W be the midpoint of the hypotenuse PR. Then segments PW, RW, and QW are all congruent.

Proof. Let $\triangle PQR$ be a right triangle with right angle at vertex Q. Let W be the midpoint of the hypotenuse PR and construct the segment QW. Since W is the midpoint of PR, we have PW and RW are congruent.

Construct the altitude from W to segment QR and let V be the foot of this altitude. Since W is the midpoint of segment PR and the segment VW is parallel to segment PQ, V must be the midpoint of QR, by Lemma 1. Thus, QV is congruent to segment VR.

2
Since QV is congruent to segment VR, WR is congruent to itself, and angles $\angle QVW$ and $\angle RVW$ are right angles and therefore congruent, we have triangle $\triangle QVW$ is congruent to triangle $\triangle RVW$, by SAS. Hence, QW and RW are congruent.

Hence, segments PW, RW, and QW are all congruent.

Theorem 3. Let $\triangle ABC$ be a triangle. Let L, M, and N be the midpoints of the sides BC, AC, and AB, respectively. Let D, E, and F be the feet of the altitudes from the vertices A, B, and C, respectively, to the opposite sides of $\triangle ABC$. It is known that altitudes of the triangle are concurrent, meeting in the orthocenter H of the triangle. Let X, Y, and Z be the midpoints of the segments AH, BH, and CH, respectively.

Then the points L, M, N, D, E, F, X, Y, Z lie on a circle, the nine-point circle of the triangle $\triangle ABC$.

Proof. Let $\triangle ABC$ be a triangle. Let L, M, and N be the midpoints of the side BC, AC, and AB, respectively.

Next, construct the segments LM, LN and MN, and their perpendicular bisectors. We remark that these perpendicular bisectors are concurrent for the following reason. Any point on the perpendicular bisector of the segment LM is equally distant from the points L and M. Similarly, any point on the perpendicular bisector of the segment LN is equally distant from the points L and N. The two bisectors certainly meet in a point U. Since U is on both these perpendicular bisectors, U is equally distant from all three points, L, M, and N. Since U is equally distant from points M and N, it lies on the perpendicular bisector of the segment MN. Hence, the three perpendicular bisectors meet at the point U, which is equally distant from the vertices of $\triangle LMN$. That is, U is the center of the
circumcircle of $\triangle LMN$.

Construct the altitudes of $\triangle ABC$ from the vertices A, B, and C, to the respective sides of $\triangle ABC$, meeting the sides at points D, E, and F, respectively. It is known that these altitudes are concurrent, the intersection being the orthocenter H of triangle $\triangle ABC$. Let X, Y, and Z, be the midpoints of the segments AH, BH, and CH, respectively. See Figure 4.

The claim is that L, M, N, D, E, F, X, Y, and Z lie on a circle, which is the circumcircle of triangle $\triangle LMN$ with center U.

Note that since M is the midpoint of segment AC and X is the midpoint of segment AH, the segment MX connects the midpoints of two sides of the triangle $\triangle ACH$, and is therefore parallel to the remaining side, segment CH, by Lemma 1. Likewise, since L is the midpoint of segment BC and Y is the midpoint of segment BH, the segment LY connects the midpoints of two sides of the triangle $\triangle BCH$, and is therefore parallel to the remaining side, segment CH, likewise by Lemma 1. By transitivity, segments MX and LY are parallel. See Figure 5.

Note that since M is the midpoint of segment AC and L is the midpoint of segment BC, the segment ML connects the midpoints of two sides of the triangle $\triangle ABC$, and is therefore parallel to the remaining side, segment AB by Lemma 1. Likewise, since X is the midpoint of segment AH and Y is the midpoint of segment BH, the segment XY connects the midpoints of two sides of the triangle $\triangle ABH$, and is therefore parallel to the remaining side, segment AB, likewise by Lemma 1. By transitivity, segments ML and XY are parallel. See Figure 5.

Since MX and LY are parallel to CH, these two segments are parallel to CF, which
contains \(CH\). But segments \(ML\) and \(XY\) are parallel to \(AB\). Since \(CF\) is the altitude from \(C\) to side \(AB\), \(CF\) is perpendicular to segment \(AB\). It follows that the pair of segments \(MX\) and \(LY\) are perpendicular to segments \(ML\) and \(XY\). That is, quadrilateral \(MLYX\) is a rectangle. See Figure 5.

Since quadrilateral \(MLYX\) is a rectangle, the segments \(MY\) and \(LX\) bisect each other at a point \(U\) into four congruent segments. That is, \(UM\), \(UL\), \(UY\), and \(UX\) are congruent. Note that \(U\) is therefore the midpoint of segment \(MY\).

Note that since \(M\) is the midpoint of segment \(AC\) and \(Z\) is the midpoint of segment \(CH\), the segment \(MZ\) connects the midpoints of two sides of the triangle \(\triangle ACH\), and is therefore parallel to the remaining side, segment \(AH\). Likewise, since \(N\) is the midpoint of segment \(AB\) and \(Y\) is the midpoint of segment \(BH\), the segment \(NY\) connects the midpoints of two sides of the triangle \(\triangle ABH\), and is therefore parallel to the remaining side, segment \(AH\). By transitivity, segments \(MZ\) and \(NY\) are parallel. See Figure 6.

Since \(MZ\) and \(NY\) are parallel to \(AH\), these two segments are parallel to \(AD\), which contains \(AH\). But segments \(MN\) and \(YZ\) are parallel to \(BC\). Since \(AD\) is the altitude from \(A\) to side \(BC\), \(AD\) is perpendicular to segment \(BC\). It follows that the pair of segments \(MZ\) and \(NY\) are perpendicular to segments \(MN\) and \(YZ\). That is, quadrilateral \(MNYZ\) is a rectangle. See Figure 6.
Since quadrilateral $MNYZ$ is a rectangle, the segments MY and NZ bisect each other at the same point U (since U is the unique midpoint of MY) into four congruent segments. That is, UM, UN, UY, and UZ are congruent.

Hence, L, M, N, X, Y, and Z lie on the circle with center U.

Consider the right triangle $\triangle XDL$. The point U is the midpoint of the hypotenuse XL, so U is equally distant from the three vertices, by Lemma 2. Hence, UL is congruent to UD. See Figure 7.
Consider the right triangle $\triangle YEM$. The point U is the midpoint of the hypotenuse YM, so U is equally distant from the three vertices, by Lemma 2. Hence, UM is congruent to UE. See Figure 8.

![Figure 8: Triangle YEM](image)

Consider the right triangle $\triangle ZFN$. The point U is the midpoint of the hypotenuse ZN, so U is equally distant from the three vertices, by Lemma 2. Hence, UN is congruent to UF. See Figure 9.

![Figure 9: Triangle ZFN](image)

It now follows that $D, E, F, L, M, N, X, Y,$ and Z lie on the circle with center U, as desired. See Figure 10.

\square
Figure 10: The Nine Point Circle