GEOLOGY OF THE AMERICUS AREA, GEORGIA

Mark D. Cocker and John O. Costello
Georgia Geologic Survey
Atlanta, Georgia 30334

38th Annual Field Trip of the
Georgia Geological Society
Americus, Georgia 10 – 12 October 2003

Georgia Geological Society Guidebooks
Volume 23, Number 1 October 2003
OFFICERS OF THE GEORGIA GEOLOGICAL SOCIETY

2003

President----------------------------- Randy L. Kath
Department of Geosciences
State University of West Georgia
Carrollton, Georgia 30118

President Elect----------------------- C.T. Williams
Florida Rock Industries, Inc.
155 East 21st Street
Jacksonville, Florida 32206

Past President----------------------- Tony Martin
Department of Environmental Studies
Emory University
Atlanta, Georgia 30322

Secretary----------------------------- Burt Carter
Department of Geology and Physics
Georgia Southwestern State University
Americus, Georgia 31709

Treasurer----------------------------- Tim Chowns
Department of Geosciences
State University of West Georgia
Carrollton, Georgia 30118

2003 Field Trip

Leaders: Mark Cocker, Georgia Geologic Survey
 John Costello, Georgia Geologic Survey

The Georgia Geological Society is a non-profit organization incorporated in the State of Georgia

Georgia Geological Society Guidebooks are published by:
The Georgia Geological Society, Inc., Atlanta, Georgia
GEOLOGY OF THE AMERICUS AREA, GEORGIA

Mark D. Cocker and John O. Costello
Georgia Geologic Survey
Atlanta, Georgia 30334

38th Annual Field Trip of the Georgia Geological Society
Americus, Georgia 10 – 12 October 2003

Georgia Geological Society Guidebooks
Volume 23, Number 1 October 2003
Acknowledgments

Each year, our society meets in the early fall for a weekend excursion into some part of Georgia (and occasionally part of an adjoining state) to see and hear what one or more of our colleagues has been doing. Every year the field trip leaders rely on people behind the scenes to help with various critical components of the event. It is these folks who are the ones that make it possible for the entire group (as opposed to a solitary field geologist) to travel point-to-point in reasonable comfort, to see some interesting geology, and to have enough time to meet new people and to catch up with old friends. This year is no different. We, therefore, wish to acknowledge and thank the following:

Florida Rock Industries and C.T. Williams – for assistance with expenses for the welcoming party.

Georgia Southwestern State University – for allowing the society to host the welcoming party at its Lake House.

To Burt Carter and Debbie Standridge – for logistical support with the welcoming party, the lunches, transportation, and lodging.

To Tim Chowns – for (once again!) managing to get the guidebook printed at the last minute.

None of this work would have been possible without support from the USGS National Cooperative Mapping Program STATEMAP component – for supporting Mark Cocker’s mapping from September 2001 to present and for supporting Mark’s predecessor, Joseph Summerour from 1998 through 2000.

C-E Minerals’ Mullite Corporation of America (MULCOA), part of the IMERYS group, graciously allowed Mark access to its Andersonville District properties, including active and inactive mines, to study the rarely seen third dimension. We also thank MULCOA geologist, Robert Hammack for his willingness to discuss the company’s perspective on the economic geology.

We also thank MULCOA for allowing the society access to its property for this trip.
CONTENTS

INTRODUCTION .. 2
PHYSIOGRAPHY AND LAND USE .. 2
SOILS .. 2
GENERAL GEOLOGY .. 3
STRATIGRAPHY OF THE AMERICUS MAP AREA ... 5
ALTERATION OF PRIMARY SEDIMENTARY TEXTURES .. 14
BIOSTRATIGRAPHY .. 16
STRUCTURAL GEOLOGY ... 16
ECONOMIC GEOLOGY .. 16
HYDROGEOLOGY .. 16
SUMMARY ... 18
REFERENCES CITED .. 19
FIGURES .. 46
FIELD TRIP ROUTE MAPS AND ROAD LOGS ... 62

FIGURES

1. Location of the Americus project area in relation to the most significant recharge areas in Georgia. .. 47
2. Location map of recent mapping in the Upper Coastal Plain of Georgia .. 48
3. Stratigraphy and related aquifers in or adjacent to the current map area .. 49
4. Weathering profile developed in the Altamaha Formation .. 50
5. Sandstone and unusual clay spires near top of the Providence Formation 51
6. Dark greenish black shale of the Clayton Formation .. 51
7. Large, subangular to subrounded kaolin boulders in coarse, kaolinitic sandstone, Nanafalia Formation (Tnf) ... 52
8. Coarse, crudely bedded, sandstone containing abundant marble- to baseball-size kaolin clasts in the Nanafalia Formation (Tnf) .. 52
9. West wall of Fowler Mine with exposures of the Altamaha Formation (Ta), Claiborne Group (Tcb), Tuscahoma Formation (Ttu), and Nanafalia Formation (Tnf) .. 53
10. South wall of Thigpen Mine with exposures of Altamaha Formation ? (Ta), Claiborne Group (Tcb), Tuscahoma Formation (Ttu), and Nanafalia Formation (Tnf) ... 54
11. North and west wall of the Guy-Pierce Mine .. 55
12. North and east walls of the Short Mine displaying a major unconformity at the base of Claiborne Group with the underlying Nanafalia Formation .. 56
13. South wall of Easterlin 278 Mine illustrating “oxidized” upper and “reduced” lower portions of Tuscahoma Formation (Ttu) .. 57
14. Undulatory contact between “oxidized” and “reduced” portions of the Tuscahoma Formation (Ttu), south wall of Perry Mine .. 57
15. Outcrop of massive chert in Tertiary Sediments and Residuum unit ... 58
16. Conglomerate in Tertiary Sediments and Residuum unit .. 58
17. Channel cut of Altamaha Formation (Ta) basal conglomerate into Claiborne Group
18. Disconformable contact between the Altamaha Formation and Tuscahoma Formation
19. Channel fill of Altamaha Formation (Ta) basal conglomerate cutting across the contact between the Clayton Formation and Providence Formation
20. Contact between Altamaha Formation (Ta) and Claiborne Group (Tcb) sandstones
21. Mines in the Andersonville Bauxite District

TABLES
1. Estimates of Resources in Millions of Dry Tonnes 28