LINEAR EQUATIONS INVOLVING ITERATES OF $\sigma(N)$

Tomohiro Yamada
Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan
tyamada@math.kyoto-u.ac.jp

Received: 11/6/07, Revised: 2/29/08, Accepted: 3/21/08, Published: 10/13/09

Abstract
We study integers N satisfying the equation $\sigma(\sigma(N)) = A\sigma(N) + BN$.

1. Introduction
We denote by $\sigma(N)$ the sum of divisors of N. N is said to be perfect if $\sigma(N) = 2N$ and multiperfect if $\sigma(N) = kN$ for some integer k. It is not known whether or not an odd perfect/multiperfect number exists. There are many known conditions which must be satisfied by such a number. But these results are far from answering whether or not an odd perfect/multiperfect number exists.

Suryanarayana [7] called N superperfect if $\sigma(\sigma(N)) = 2N$ and Pomerance [5] called N super multiply perfect if $\sigma(\sigma(N)) = kN$ for some integer k. More generally, Cohen and te Riele [2] defined N to be (m,k)-perfect if $\sigma^{(m)}(N) = kN$, where $\sigma^{(m)}(N)$ denotes $\sigma(\sigma^{(m-1)}(N))$ with $\sigma^{(0)}(N) = N$.

We introduce another analogous notion of perfect/multiperfect numbers. We say that N is $(n; a_0 : \ldots : a_n)$-perfect if $\sum_{i=0}^{n} a_{n-i} \sigma^{(i)}(N) = 0$ and $(n; a_1, \ldots, a_n)$-perfect if N is $(n; -1 : a_1 : \ldots : a_n)$-perfect. In particular, N is $(2; A, B)$-perfect if $\sigma(\sigma(N)) = A\sigma(N) + BN$.

We begin by noting that almost all integers are $(2; A, B)$-perfect for some integers A, B. This fact follows from Katai and Subbarao [3, Theorem 1]. They proved that for any fixed $m \geq 1$, we have $(N, \sigma^{(m)}(N)) = \prod_{p || N} p^k$, where p runs over all primes below x_m^2, for all integers $N \leq x$ with $o(x)$ exceptions (Here we use the notation $x_0 = x, x_{i+1} = \max\{1, \log x_i\}$ for all $i \geq 0$, where $\log x$ is the natural logarithm of x, introduced in [4]). Hence, for almost all integers N, $(N, \sigma(N))$ divides $\sigma^{(2)}(N)$, which implies that there exist some integers A, B such that $\sigma(\sigma(N)) = A\sigma(N) + BN$.

On the other hand, we can show that for any fixed positive integers A, B, the set of $(2; A, B)$-perfect numbers has density zero.

Theorem 1.1. Let A, B, C be integers not all zero and satisfying $AC \leq 0$. Then the number of $(2; A : B : C)$-perfect numbers below x is at most $x \exp(-(2^{-1/3} + o(1))(\log x)^{1/3}(\log \log x)^{2/3})$.

Our argument is similar to the argument of Pomerance [6] to study the distribution of integers n satisfying $\sigma(n) \equiv a \pmod{n}$. His argument rests on the fact that
almost all integers \(n \) can be written as \(mp \), where \(p \nmid m \) is prime, large and uniquely determined by \(m \) except some special cases. Our argument adopts a factorization of \(p + 1 \) into \(lq \) with \(q \) large and \((l, q) = 1 \), to show that \(q \) is uniquely determined by \(m \) and \(l \) under some condition.

We note that this result does not seem to apply to the case \(AC > 0 \). If \(p, 2p - 1 \) are both prime, then \(n = 2p - 1 \) satisfies \(2\sigma(\sigma(n)) - 3\sigma(n) + 6n = 0 \) and therefore \(n \) is \((2; 2 : -3 : 6) \)-perfect. More generally, we can easily confirm the following result.

Theorem 1.2. Let \(R \) be an arbitrary positive integer. If \(p \) and \(N = Rp - 1 \) are both prime, then \(N \) is \((2; R : -(R + 1)\sigma(R) : R(\sigma(R))) \)-perfect.

Corollary 1.3. If \(R \) is a \(k \)-multiperfect number and \(p, N = Rp - 1 \) are both prime, then \(N \) is \((2; k(R + 1) : -kR) \)-perfect.

A well-known conjecture states that, for any even integer \(R \), the number of primes \(p < x \) with \(Rp - 1 \) also prime is asymptotically equal to \(cx/(\log x)^2 \) for some constant \(c > 0 \) depending on \(R \), contrary to the above given estimate \(O(x \exp(-\frac{2^{1/3} + o(1)}{(\log x)^{1/3}}(\log \log x)^{2/3})) \).

2. Notations and Preliminary Lemmas

We denote by \(P(n), p(n) \) the largest and smallest prime factor of \(n \) respectively. For the positive real number \(x \), let us denote \(x_0 = x, x_{i+1} = \max\{1, \log x_i\} \) as mentioned in the previous section. We denote by \(c \) some positive constant not necessarily same at every occurrence. Furthermore, we denote by \(x, y, z \) real numbers and we put \(u = \log x/\log y \) and \(v = \log y/\log z \).

Lemma 2.1. Denote by \(\Psi(x, y) \) the number of integers \(n \leq x \) divisible by no prime \(> y \). If \(y > x^{2/3} \), then we have \(\Psi(x, y) < x \exp(-(1 + o(1))u \log u) \) as \(x, u \) tend to infinity.

Proof. This follows from a well-known theorem of de Bruijn [1]. For details on the distribution of integers free from large prime factors, we refer the readers to [8, Chapter III. 5], where a simple proof of the lemma is also given. \(\square \)

Lemma 2.2. Let

\[
s(x,k) = \sum_{p \leq x, p \equiv -1 \pmod k} \frac{1}{p},
\]

Uniformly in \(k \) and \(x \geq e^2 \), we have

\[
s(x, k) \ll \frac{x^2}{\varphi(k)}.
\]
Proof. This inequality can be immediately obtained using partial summation and the Brun–Titchmarsh inequality. The complete proof is given in [4, Lemma 2]. □

Lemma 2.3. Let \(S(x) = \{n \mid n \leq x, p^n \mid n \mbox{ for some } p, a \mbox{ with } p^a > y, a \geq 2 \} \). Then we have \(\#S(x) \ll x y^{-1/2} \).

Proof. Let \(\Pi(t) \) be the number of perfect powers below \(t \). It is clear that \(\Pi(t) < t^{1/2} + t^{1/3} + \cdots + t^{1/k} < t^{1/2} + ct^{1/3} \log t \ll t^{1/2} \), where \(k = \lfloor (\log x)/(\log 2) \rfloor \).

Let us denote by \(\gamma_p \) the smallest integer \(\gamma \) for which \(p^\gamma > y \) and \(\gamma > 1 \). Clearly we have \(\#S(x) \leq x \sum_{p \leq x} p^{-\gamma_p} \). Since \(p^\gamma > y \), we have by partial summation

\[
\sum_{p \leq x} \frac{1}{p^\gamma} \leq \frac{\Pi(x)}{x} - \frac{\Pi(y)}{y} + \int_y^x \frac{\Pi(t)}{t^2} dt \ll x^{-1/2}.
\]

This proves the lemma. □

Lemma 2.4. If \(y > z > 2x^2 \) and \(v > x_2 \), then the number of integers \(\leq x \) divisible by some prime \(p \geq y \) with \(P(p+1) < z \) is at most \(x \exp(-(1+o(1))v \log v) \).

Proof. The number of such integers is at most

\[
\sum_{y \leq p \leq x, P(p+1) < z} \frac{x}{p} \leq x \sum_{y \leq m \leq x, P(m+1) < z} \frac{1}{m},
\]

where \(p \) and \(m \) respectively run over primes and integers satisfying the described conditions. By partial summation, we find that the last sum is at most

\[
\frac{\Psi(y, z)}{y} + \int_y^{2x} \frac{\Psi(t, z)dt}{t^2}.
\]

Since we have \(\Psi(t, z)/t < \exp(-(1+o(1))v \log v) \) uniformly for \(t \in [y, 2x] \) by Lemma 2.1, the last sum in (4) can be bounded from above by

\[
\exp(-(1+o(1))v \log v) \left(1 + \int_y^{2x} \frac{dt}{t}\right).
\]

This integral is \(O(x_1) = O(\exp v) \) since, by assumption, \(x_2 < v \). Thus we obtain

\[
x \sum_{y < m \leq x, P(m+1) < z} \frac{1}{m} = x \exp(-(1+o(1))v \log v).
\]

This completes the proof. □
3. Proof of Theorem 1.1

Let y, z be real numbers and put $u = \log x / \log y$ and $v = \log y / \log z$. We choose y, z later so that $x > y > z > x_1^2, v > x_2$ and u, v, y, z tend to infinity as x does so.

Let

$$S_1 = \{ n \mid n \leq x, P(n) \leq y \}$$

and

$$S_2 = \{ n \mid n \leq x, p^a \mid n \text{ for some } p, a \text{ with } p^a \geq z, a \geq 2 \}. \quad (9)$$

We immediately obtain $\#S_1 = O(x \exp(-(1 + o(1))u \log u))$ by Lemma 2.1 and $\#S_2 = O(x/z^{1/2})$ by Lemma 2.3.

Denote by S_3 the set of integers $n \leq x$ not in $S_1 \cup S_2$ which can be written in the form mp, where p is a prime $\geq y$, m is an integer not divisible by p and $(\sigma(m), p+1)$ is divisible by some prime $q \geq z$.

Let n be an integer in S_3 and write $n = mp$ in the above way. Then $q \mid \sigma(r^a)$ for some prime r dividing m and some integer a with $r^a \mid m$. Since $q \geq z$, we have $a = 1$ by the assumption $n \notin S_2$. Hence, m is divisible by some prime r congruent to $-1 \pmod{q}$.

Since $m \leq x/p$, the number of integers n satisfying $n = mp, q \mid (\sigma(m), p+1)$ for some $q \geq z$ is at most

$$\sum_{q \geq z \mid p \equiv 1 \pmod{q}} \sum_{r \equiv -1 \pmod{q}} \sum_{x/p \mid (q) \mid r} x/p \leq \sum_{q \geq z} \frac{c x x_2}{q^2} \leq \frac{c x x_2}{z \ln z}, \quad (10)$$

by Lemma 2.2. Hence, we have $\#S_3 = O(x x_2^2/z)$.

Denote by S_4 the set of integers $n \leq x$ divisible by some prime $p \geq y$ with $P(p+1) < z$ or $q^2 \mid (p+1)$ for some $q \geq z$. By Lemma 2.4, the number of integers $n \leq x$ divisible by some prime $p \geq y$ with $P(p+1) < z$ is $O(x \exp(-(1 + o(1))v \log v))$. The number of integers $n \leq x$ divisible by some prime p with $q^2 \mid (p+1)$ for some $q \geq z$ is at most

$$x \sum_{q \geq z \mid p \equiv 1 \pmod{q}} \sum_{(mod q^2)} \frac{1}{p} \leq c x x_2 \sum_{q \geq z} \frac{1}{q} \leq \frac{c x x_2}{z x_1^{1/3}} \ll \frac{x}{z}, \quad (11)$$

by the assumption that $z > x_1^2$.

Combining these estimates yield $\#S_4 = O(x(1/z + \exp(-(1 + o(1))v \log v)))$.

We may assume that at least one of A and C is nonzero since the equation

$$A \sigma(\sigma(N)) + B \sigma(N) + CN = 0$$

does not hold if exactly one of A, B, C is nonzero.

Now let us denote by T the set of $(2; A : B : C)$-perfect numbers $n \leq x$ belonging to none of $S_i(i = 1, 2, 3, 4)$. We assume that $n \in T$. Since $n \notin S_1 \cup S_2$, we have $P(n) > y$ and $P(n)^2 \mid n$. Thus n can be expressed as $n = mp, p > y$ and $p \nmid m$.

Now it follows from $n \notin S_3$ that $(\sigma(m), p+1)$ has no prime factor $\geq z$. Let T_m denote the set of such integers. Moreover, we write $p + 1 = N_1 N_2$ in the way
$P(N_1) < z \leq p(N_2)$ and divide each of T_m into sets T_{m,N_1} according to the value of N_1. Since $n \notin S_4$, we have $p + 1$ is divisible by some prime $Q \geq z$ exactly once. By the definition of N_1, N_2, we have $N_2 = N_3 Q$ and T_{m,N_1} can be covered by sets T_{m,N_1,N_3} according to the value of N_3.

We shall show each T_{m,N_1,N_3} consists at most one element. We have $\sigma(n) = \sigma(m)(p + 1)$ and $\sigma(\sigma(n)) = \sigma(M_1N_1)\sigma(M_2)\sigma(N_2)$, where M_1, M_2 are uniquely determined by $\sigma(m) = M_1M_2$, $P(M_1) < z \leq p(M_2)$. Furthermore, noting that Q does not divide $(p + 1)/Q$ by the assumption that $n \notin S_4$, we obtain $\sigma(N_2) = \sigma(N_3)(Q + 1)$. Since $A\sigma(\sigma(n)) + B\sigma(m)(p + 1) + Cmp = 0$, we have

$$A\sigma(M_1N_1)\sigma(M_2)\sigma(N_3)(Q + 1) + (B\sigma(m) + Cm)N_1N_3Q - Cm = 0.\quad (12)$$

Denoting

$$C_1 = A\sigma(M_1N_1)\sigma(M_2)\sigma(N_3),\quad C_2 = (B\sigma(m) + Cm)N_1N_3,\quad C_3 = Cm,$\quad (13)$$

this equation can be written

$$(C_1 + C_2)Q = (C_3 - C_1).\quad (14)$$

Since $AC \leq 0$, we have $C_1 \neq C_3$ and therefore Q can be uniquely determined as

$$Q = \frac{C_3 - C_1}{C_1 + C_2}.\quad (15)$$

This is the crucial point where we use the assumption $AC \leq 0$. The uniqueness of Q yields that $\#T_{m,N_1,N_3} \leq 1$ for any m, N_1, N_3.

By the definition of T_{m,N_1,N_3}, each element of T must belong to T_{m,N_1,N_3} for at least one triple (m, N_1, N_3). Since $N_1N_3 = (p + 1)/Q \leq (x/m + 1)/z \leq 2x/(mz)$, we have

$$\#T \leq \sum_{m \leq x/y} \sum_{N_1 \leq x/y} \sum_{N_3 \leq z^2/mz} \frac{2x}{mz} \leq \frac{cxz}{z^2/mz} \leq \frac{cxz}{z^{3/2}}.\quad (16)$$

Now we conclude that the number of $(2; A, B)$-perfect numbers $\leq x$ is at most $\#S_1 + \#S_2 + \#S_3 + \#S_4 + \#T$, which is

$$O(x(z^{-1/2} + \exp(-(1 + o(1))u \log u) + \exp(-(1 + o(1))v \log v)))\quad (17)$$

by those estimates for $\#S_i$’s and $\#T$ given above.

In order to search the optimal estimate, we put $\log z = c_1x_1^{1/3}x_2^{2/3}, \log y = c_2x_1^{2/3}x_2^{1/3}$ and we have $u \log u = (1 + o(1))c_1^{-1}x_1^{1/3}x_2^{2/3}$ and $v \log v = (1 + o(1))(c_2/c_1)x_1^{1/3}x_2^{2/3}$. We see that $\max\{c_1/2, c_2/c_1, 1/c_2\} \geq 2^{-1/3}$ with the equality attained when we choose $c_1 = 2^{2/3}, c_2 = 2^{1/3}$. This choice gives the desired estimate. This completes the proof of Theorem 1.1.

We remark that $(2; R : -(R+1)\sigma(R) : R\sigma(R))$-perfect numbers given in Theorem 1.2 correspond to the case $m = N_1 = 1, C = A\sigma(R) = -(B + C)R$.

Acknowledgments

The author thanks Prof. Florian Luca for his advice on exceptional triples \((A, B, C)\).

References

[6] C. Pomerance, *On the congruences \(\sigma(n) \equiv a \pmod{n}\) and \(n \equiv a \pmod{\varphi(n)}\)*, Acta Arith. **26** (1975), 265–272.
