Speaker: Prof. Semyon Yakubovich, Department of Pure Mathematics, University of Porto, Porto, Portugal

Title: On the least values of L_p-norms for the Kontorovich-Lebedev transform and its convolution

We establish analogs of the Hausdorff-Young and Riesz-Kolmogorov inequalities and the norm estimates for the Kontorovich-Lebedev transformation and the corresponding convolution. These classical inequalities are related to the norms of the Fourier convolution and the Hilbert transform in L_p spaces, $1 \leq p \leq \infty$. Boundedness properties of the Kontorovich-Lebedev transform and its convolution operator are investigated. In certain cases the least values of the norm constants are evaluated. Finally, it is conjectured that the norm of the Kontorovich-Lebedev operator $K_{1}\tau : L_p(\mathbb{R}_+; x dx) \to L_p(\mathbb{R}_+; x \sinh \pi x dx)$, $2 \leq p \leq \infty$

$$K_{1}\tau [f] = \int_{0}^{\infty} K_{1}\tau (x) f(x) dx, \quad \tau \in \mathbb{R}_+$$

is equal to $\frac{\pi}{2^{\frac{1}{p}}}$. It confirms, for instance, by the known Plancherel type theorem for this transform when $p = 2$.

(Contact person: Dr. Vu Kim Tuan, 678-839-4135)