Consider the operator equation in X

$$L_1X - XL_2 = Y$$ \hspace{1cm} (1)

where Y, L_1 and L_2 are given operators. When L_1 and L_2 are bounded operators, one can prove the existence and uniqueness of a solution X,

$$X = \frac{1}{2\pi i} \int_{\Gamma} \left((L_1 - \lambda I)^{-1} Y (L_2 - \lambda I)^{-1} \right) d\lambda$$

and (1) has a unique solution if and only if $L_1X = XL_2$ has the trivial solution only. In the simple case when L_1 and L_2 are finite matrices with disjoint spectra, then $L_1X = XL_2$ has the trivial solution $X = 0$, which is contained in the Sylvester-Roseblum theorem. In this talk we show why uniqueness may not hold, when L_1 and L_2 are unbounded operators. The main idea is to use transmutation operators between L_1 and L_2 to construct a non trivial solution.

All are welcome.