SOME APPLICATIONS OF THE CONVOLUTION THEOREM OF THE HILBERT TRANSFORM

Vu Kim Tuan

Department of Mathematics
Faculty of Science, Kuwait University
P.O. Box 5969, Safat – 13060, Kuwait

H.–J. Glaeske
Fakultät für Mathematik und Informatik
Friedrich–Schiller–Universität Jena
Leutragraben 1, D–07743 Jena, Germany

Abstract

For the Hilbert transform
\[\tilde{f}(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(t)}{x-t} dt \]
a new proof of the convolution formula is given. This convolution formula is then applied to calculate some Cauchy integrals and to solve a nonlinear singular integral equation.

Keywords: Hilbert Transform, Convolution, Nonlinear Singular Integral Equation

1991 Mathematics Subject Classifications: 44A15, 44A35.

1. INTRODUCTION

Applications of the convolution formulae of Fourier, Laplace and Mellin transforms are well-known. Recently some applications of the convolutions formulae for Hankel, Stieltjes and Kontorovich–Lebedev transforms are given (see [4, 5, 6, 7, 9]). For the Hilbert transform ([1])
\[H[f](x) = \tilde{f}(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(t)}{x-t} dt, \tag{1} \]
the convolution theorem has been established in L_p spaces in ([8], p. 169), but is missing in modern textbooks on integral transforms. In this paper we give an another proof of this

*The work of this author was supported by the Alexander von Humboldt Foundation and the Kuwait University research grant
theorem and then apply this result to calculate some Cauchy integrals of special functions and to obtain explicit solutions of a nonlinear singular integral equation.

2. CONVOLUTION THEOREM

Let \(f, g \) be defined on \(R \) and belong corresponding to \(L_p(R) \) and \(L_q(R) \), \(1 < p, q < \infty, \ p^{-1} + q^{-1} < 1 \). Then Hilbert transforms \(\tilde{f} \) and \(\tilde{g} \) of \(f \) and \(g \) exist and belong to \(L_p(R) \) and \(L_q(R) \), too. Furthermore, \(fg \in L_r(R) \) with \(r^{-1} = p^{-1} + q^{-1} \). Consequently, the Hilbert transform \(\tilde{fg} \) of \(fg \) exists and belongs to \(L_r(R) \). Therefore, if we put \(h(x) = (f \otimes g)(x) = \frac{1}{\pi} \int_R (f(x)g(t) + g(x)f(t) - f(t)g(t)) \frac{dt}{x-t} \), (2)

then \(h \) exists and belongs to \(L_r(R) \). Our main result in this paragraph is a new proof of the following

Theorem ([8], p. 169). The Hilbert transform of \(h \) is the product of the Hilbert transforms of \(f \) and \(g \)

\[\tilde{h}(x) = \tilde{f}(x)\tilde{g}(x). \] (3)

Proof. Let \(f \) and \(g \) belong to \(S \), the space of infinitely differentiable functions which, together with their derivatives, approach zero more rapidly than any power of \(|x|^{-1}\) as \(|x| \to \infty\). Applying the Hilbert transform to the function \(h(x) \) we obtain

\[\tilde{h} = \tilde{f}\tilde{g} + \tilde{g}\tilde{f} + fg. \] (4)

Applying now the Fourier transform

\[F[f](x) = \int_R f(t) \exp(-ixt) \, dt, \] (5)

to (4) and using the properties [1]

\[F[\tilde{f}] = -i \text{sgn} \, x F[f] \] (6)

and \(2\pi F[fg] = F[f] \odot F[g] \), where

\[f \odot g = \int_R f(t)g(x-t) \, dt \] (7)

is the Fourier convolution, we get

\[
2\pi F[\tilde{h}] = 2\pi F[\tilde{f}\tilde{g} + \tilde{g}\tilde{f} + fg] \\
= -2\pi i \text{sgn} \, x F[f\tilde{g} + \tilde{f}g] + F[fg] \\
= -i \text{sgn} \, x \{ F[f] \odot F[\tilde{g}] + F[\tilde{f}] \odot F[g] \} + F[f] \odot F[g] \\
= -\text{sgn} \, x \{ F[f] \odot (\text{sgn} \, x F[g]) + (\text{sgn} \, x F[f]) \odot F[g] \} + F[f] \odot F[g] \\
= (-i \text{sgn} \, x F[f]) \odot (-i \text{sgn} \, x F[g]) = (F[\tilde{f}]) \odot (F[\tilde{g}]).
\]
Consequently,
\[\tilde{h} = \tilde{f} \tilde{g}, \]
that means \(h \) is the convolution of the Hilbert transform. Since the space \(S \) is dense in \(L_p(R) \) and \(L_q(R) \), where the Hilbert transform is bounded, formula (3), first proved to be valid on dense subspaces of \(L_p(R) \) and \(L_q(R) \), still holds for all \(f \in L_p(R) \) and \(g \in L_q(R) \). Thus Theorem is proved.

3. EVALUATION OF SOME CAUCHY INTEGRALS

Let \(g = \tilde{f} \). Then formula (2) becomes
\[h = -f^2 + \tilde{f}^2 - \tilde{f} \tilde{f}. \] (8)
But \(\tilde{h} = \tilde{f} \tilde{g} = -f \tilde{f} \). Therefore, \(h = f \tilde{f} \). Consequently, we have
\[\tilde{f}^2(x) - f^2(x) = \frac{2}{\pi} \int_R \frac{f(t) \tilde{f}(t)}{x-t} dt. \] (9)

Formula (9) can be applied to evaluate new Hilbert integrals. Namely, if the Hilbert transform of \(f \) is known, then the Hilbert transform of \(f \tilde{f} \) is \(\frac{1}{2} (\tilde{f}^2 - f^2) \). For example, let \(f(x) = \exp(-|x|)I_0(x) \in L_p(R) \). Then \(\tilde{f}(x) = 2 \sinh(x)K_0(x) \) (see [2], p. 260). Therefore,
\[\int_R \frac{\exp(-|t|) \sinh(t)K_0(t)I_0(t)}{x-t} dx = \sinh^2(x)K_0^2(x) - \frac{1}{4} \exp(-2|x|)I_0^2(x). \] (10)

Let
\[f(x) = G_{pq}^{mn} \left(ax^2 \left| \begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} \right. \right), \quad p + q < 2(m + n), \arg a < (m + n - p/2 - q/2)\pi, \quad \Re a_j < 1, \quad j = 1, \ldots, n; \quad \Re b_j > -1/2, \quad j = 1, \ldots, m, \] (11)
where \(G_{pq}^{mn} \left(x \left| \begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} \right. \right) \) is the G-Meyer function ([2]). Then ([2], p. 262)
\[\tilde{f}(x) = -\text{sgn} x G_{p+2q+2}^{m+1n+1} \left(ax^2 \left| \begin{array}{c} 1/2, a_1, \ldots, a_p; 1/2, b_1, \ldots, b_q \end{array} \right. \right). \] (12)

Hence
\[\frac{2}{\pi} \int_R \text{sgn} t G_{pq}^{mn} \left(at^2 \left| \begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} \right. \right) G_{p+2q+2}^{m+1n+1} \left(at^2 \left| \begin{array}{c} 1/2, a_1, \ldots, a_p; 1/2, b_1, \ldots, b_q \end{array} \right. \right) \frac{dt}{x-t} \]
\[= \left\{ G_{pq}^{mn} \left(ax^2 \left| \begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} \right. \right) \right\}^2 - \left\{ G_{p+2q+2}^{m+1n+1} \left(ax^2 \left| \begin{array}{c} 1/2, a_1, \ldots, a_p; 1/2, b_1, \ldots, b_q \end{array} \right. \right) \right\}^2, \] (13)

\[p + q < 2(m + n), \quad \arg a < (m + n - p/2 - q/2)\pi, \quad \Re a_j < 1, \quad j = 1, \ldots, n; \quad \Re b_j > -1/2, \quad j = 1, \ldots, m, \]

Using tables of the Hilbert transform one can calculate new Cauchy integrals by this method.
4. A NONLINEAR SINGULAR INTEGRAL EQUATION

Consider now a nonlinear singular integral equation

\[\lambda f(x) + \frac{2}{\pi} f(x) \int_R \frac{f(t)}{x-t} dt - \frac{1}{\pi} \int_R \frac{f^2(t)}{x-t} dt = g(x), \quad \lambda \in C. \quad (14) \]

This equation can be rewritten in the equivalent form

\[\lambda f(x) + (f \otimes f)(x) = g(x). \quad (15) \]

Applying now the Hilbert transform to (15) and using Theorem we have

\[\lambda \tilde{f} + \tilde{f}^2 = \tilde{g}. \quad (16) \]

Solving this equation we obtain

\[\tilde{f}(x) = -\frac{\lambda}{2} \pm \sqrt{\frac{\lambda^2}{4} + \tilde{g}(x)}. \quad (17) \]

Here \(\sqrt{\frac{\lambda^2}{4} + \tilde{g}(x)} \) is a branch of the square such that \(\Re \{ \sqrt{\frac{\lambda^2}{4} + \tilde{g}(x)} \} \geq 0 \). Let \(\lambda = 0 \). If \(f \in L_p(R) \), then \(g \in L_{p/2}(R) \) and therefore, \(\tilde{g} \in L_{p/2}(R) \). We have

\[\tilde{f}(x) = \pm \sqrt{\tilde{g}(x)}. \quad (18) \]

Taking

\[\tilde{f}_\Omega(x) = \begin{cases} \sqrt{\tilde{g}(x)} & \text{if } x \in \Omega \\ -\sqrt{\tilde{g}(x)} & \text{otherwise} \end{cases}, \quad (19) \]

where \(\Omega \) is any measurable subset of \(R \). It is not difficult to see that \(f_\Omega \) consist all of solutions of the equation (14).

Let \(\lambda \neq 0 \). We choose

\[\tilde{f}_\Omega(x) = \begin{cases} -\frac{\lambda}{2} + \sqrt{\frac{\lambda^2}{4} + \tilde{g}(x)} & \text{if } x \in \Omega \\ -\frac{\lambda}{2} - \sqrt{\frac{\lambda^2}{4} + \tilde{g}(x)} & \text{otherwise} \end{cases}, \quad (20) \]

It is easy to see that if \(f \) is a solution of (14), then its Hilbert transform has the form (20). But not every \(\tilde{f}_\Omega \) belongs to \(L_p(R) \). We show that \(\tilde{f}_\Omega \in L_p(R) \) if and only if

\[|\Omega| < \infty \quad \text{if } \Re \lambda < 0 \]
\[|R/\Omega| < \infty \quad \text{otherwise}, \quad (21) \]

where \(|\Omega| \) is the measure of \(\Omega \). Indeed, let \(\Re \lambda < 0 \). Then

\[\|\tilde{f}_\Omega\|_p^p \geq \int_\Omega \left| -\frac{\lambda}{2} + \sqrt{\frac{\lambda^2}{4} + \tilde{g}(x)} \right|^p dx \geq \left| \frac{\lambda}{2} \right|^p |\Omega|. \]
Therefore, if $\tilde{f}_\Omega \in L_p(R)$, then $|\Omega| < \infty$. We prove that this condition is not only necessary, but also sufficient. We have

$$\|\tilde{f}_\Omega\|_p^p = \|\tilde{f}_\Omega\|_{L_p(\Omega)}^p + \left|\frac{2}{\lambda}\int_{R/\Omega} \frac{\tilde{g}(x)}{1 + \sqrt{1 + 4\lambda^{-2}\tilde{g}(x)}} \right|^p \lesssim \|\tilde{f}_\Omega\|_{L_p(\Omega)}^p + \left|\frac{2}{\lambda}\|\tilde{g}\|_p\right|^p < \infty.$$

Analogously for the case $\Re \lambda \geq 0$.

Therefore, all solutions of the equation (14) are Hilbert transforms of $-\tilde{f}_\Omega$ having form (20) with the condition (21).

References

