Multidimensional Fractional Calculus Operators
Involving the Gauss Hypergeometric Function

Vu Kim Tuan∗, R. K. Raina† and Megumi Saigo‡

Department of Mathematics and Computer Science, Faculty of Science,
Kuwait University, P.O.Box 5969, Safat 13060, Kuwait

Department of Mathematics, College of Technology and Agricultural Engineering,
Rajasthan Agriculture University, Udaipur 313001, Rajasthan, India

Department of Applied Mathematics, Fukuoka University, Faculty of Science,
Fukuoka 814-80, Japan

Abstract

This paper deals with some multidimensional integral operators involving the Gauss
hypergeometric function in the kernel and generating the multidimensional modified
fractional calculus operators introduced in [8]. Some mapping properties, weighted
inequalities, a formula of integration by parts and index laws are obtained.

1. Introduction and Preliminaries

As usual C and R+ denote the sets of complex and non-negative real numbers, respec-
tively, and α, β, γ, · · · stand for complex numbers. Let R+n denote the set of n-tuple non-
negative real numbers, and Cn of n-tuple complex numbers. We reserve a, b, c, · · ·, x, · · · in
most cases for elements of Cn, that means x = (x1, · · · , xn) etc. We set xα = xα1 · · · xαn and
x.1 = x1 + · · · + xn.

In [8] the multidimensional modified fractional integrals of order α with Re(α) > 0 are
defined as follows:

\[
X_+^\alpha f(x) = \frac{1}{\Gamma(\alpha + 1)} \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \int_{\mathbb{R}_+^n} \left[\min \left\{ \frac{x_1}{t_1}, \cdots, \frac{x_n}{t_n} \right\} - 1 \right]_+^\alpha f(t) dt,
\]

∗Supported by the Kuwait University Research Grant SM112.
†Supported by National Board for Higher Mathematics (Department of Atomic Energy, Government of
India) under Grant No. 26/6/93-61.
‡Supported partly by Science Research Promotion Fund from the Japan Private School Promotion
Foundation.
\[X_\alpha f(x) = \frac{(-1)^n}{\Gamma(\alpha + 1)} \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \int_{\mathbb{R}^n_+} \left[1 - \max \left\{ \frac{x_1}{t_1}, \ldots, \frac{x_n}{t_n} \right\} \right]^\alpha f(t) dt, \]

where \(\varphi_+(x) \) is defined from a real valued function \(\varphi(x) \) by

\[
\varphi_+(x) = \begin{cases}
\varphi(x), & \text{if } \varphi(x) > 0 \\
0, & \text{if } \varphi(x) \leq 0.
\end{cases}
\]

They are generalizations of the one-dimensional Riemann-Liouville and Weyl fractional integral operators, respectively [6].

In [4] another kind of generalization of the Riemann-Liouville and Weyl fractional integral operators involving the Gauss hypergeometric function \(_2F_1(\alpha, \beta; \gamma; z) \) [2] is introduced

\[
I^\alpha,\beta,\eta_x f = \frac{x^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} _2F_1 \left(\alpha + \beta, \alpha + \eta; 1 + \alpha; 1 - \frac{t}{x} \right) f(t) dt,
\]

(1.3)

\[
J^\alpha,\beta,\eta_x f = \frac{1}{\Gamma(\alpha)} \int_x^\infty (t-x)^{\alpha-1} t^{-\alpha-\beta} _2F_1 \left(\alpha + \beta, -\eta; 1 + \alpha; 1 - \frac{x}{t} \right) f(t) dt.
\]

(1.4)

In this paper some multidimensional modified fractional integral operators \(S^\alpha,\beta,\eta_+; n \) and \(S^\alpha,\beta,\eta_-; n \) that generalize both (1.1), (1.2) and (1.3), (1.4) are introduced. Their mapping properties, product rules, index laws, inverse and composition structures are also studied.

2. Definitions and Special Cases

The multidimensional modified fractional integral operators \(S^\alpha,\beta,\eta_+; n \) and \(S^\alpha,\beta,\eta_-; n \) are defined as follows:

\[
S^\alpha,\beta,\eta_+; n f(x) = \frac{1}{\Gamma(\alpha + 1)} \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \int_{\mathbb{R}^n_+} \left[\min \left\{ \frac{x_1}{t_1}, \ldots, \frac{x_n}{t_n} \right\} - 1 \right]^\alpha \\
\cdot _2F_1 \left(\alpha + \beta, \alpha + \eta; 1 + \alpha; 1 - \min \left\{ \frac{x_1}{t_1}, \ldots, \frac{x_n}{t_n} \right\} \right) f(t) dt,
\]

(2.1)

\[
S^\alpha,\beta,\eta_-; n f(x) = \frac{(-1)^n}{\Gamma(\alpha + 1)} \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \int_{\mathbb{R}^n_+} \left[1 - \max \left\{ \frac{x_1}{t_1}, \ldots, \frac{x_n}{t_n} \right\} \right]^\alpha \\
\cdot _2F_1 \left(\alpha + \beta, -\eta; 1 + \alpha; 1 - \max \left\{ \frac{x_1}{t_1}, \ldots, \frac{x_n}{t_n} \right\} \right) f(t) dt
\]

(2.2)

for \(\text{Re}(\alpha) > 0 \).

If \(a = 0 \), then \(_2F_1(a, b; c; z) = 1 \), and therefore, in case \(\beta = -\alpha \) the operators (2.1) and (2.2) reduce to the modified fractional operators (1.1) and (1.2), respectively.
Let now \(n = 1 \). We have
\[
S^{\alpha,\beta,\eta}_{+;1} f(x) = \frac{1}{\Gamma(\alpha + 1)} \frac{d}{dx} \int_0^x \left(\frac{x}{t} - 1 \right)^{\alpha} 2F_1 \left(\alpha + \beta, \alpha + \eta; 1 + \alpha; 1 - \frac{x}{t} \right) f(t) dt.
\]
Using the formula [2]
\[
2F_1(a, b; c; z) = (1 - z)^{-a} 2F_1 \left(a, c - b; c; \frac{z}{z - 1} \right), \quad a, b, c, z \in \mathbb{C},
\]
we obtain
\[
S^{\alpha,\beta,\eta}_{+;1} f(x) = \frac{1}{\Gamma(\alpha + 1)} \frac{d}{dx} \left[x^{-\alpha-\beta} \int_0^x (x - t)^{\alpha} 2F_1 \left(\alpha + \beta, 1 - \eta; 1 + \alpha; 1 - \frac{t}{x} \right) t^\beta f(t) dt \right]
= \frac{d}{dx} J^{\alpha+1,\beta-1,\eta-1;\beta}_{x^\alpha} f(x).
\]
Then in view of [5, formula (4.1)] we find that
\[
I^{\alpha,\beta,\eta}_x f(x) = S^{\alpha,\beta,\eta}_{+;1} x^{-\beta} f(x),
\]
which means operator (1.3) is a special case of operator (2.1).

Similarly, we have
\[
S^{\alpha,\beta,\eta}_{-;1} f(x) = -\frac{1}{\Gamma(\alpha + 1)} \frac{d}{dx} \int_x^\infty \left(1 - \frac{x}{t} \right)^{\alpha} 2F_1 \left(\alpha + \beta, -\eta; 1 + \alpha; 1 - \frac{1}{t} \right) f(t) dt
= -\frac{d}{dx} J^{\alpha+1,\beta-1,\eta;\beta}_{x^\alpha} f(x)
\]
and from [5, formula (4.2)] we obtain
\[
J^{\alpha,\beta,\eta}_x f(x) = S^{\alpha,\beta,\eta}_{-;1} x^{-\beta} f(x),
\]
and that means operator (1.4) is a special case of operator (2.2).

By dividing \(\mathbb{R}^n_+ \) for a fixed \(x \in \mathbb{R}^n_+ \) into \(n \) subdomains with zero-measure intersection
\[
\mathbb{R}^n_+ = \bigcup_{k=1}^n \left\{ t \in \mathbb{R}^n_+ \mid \frac{x_k}{t_k} \leq \frac{x_j}{t_j} \ (j = 1, \cdots, n; \ j \neq k) \right\},
\]
the multidimensional fractional operator \(S^{\alpha,\beta,\eta}_{x,n} \) can be expressed as a finite sum of single integrals
\[
S^{\alpha,\beta,\eta}_{x,n} f(x) = \frac{1}{\Gamma(\alpha + 1)} \cdot \sum_{k=1}^n \frac{\partial}{\partial x_k} \left[x_k \int_0^1 t^{n-\alpha-1} (1 - t)^{\alpha} 2F_1 \left(\alpha + \beta, \alpha + \eta; 1 + \alpha; 1 - \frac{1}{t} \right) f(x_1 t, \cdots, x_n t) dt \right].
\]
Similarly, by dividing \mathbb{R}^n_+ into n subdomains with zero-measure intersection

$$
\mathbb{R}^n_+ = \bigcup_{k=1}^n \left\{ t \in \mathbb{R}^n_+ \left| \frac{x_k}{t_k} \geq \frac{x_j}{t_j} \ (j = 1, \cdots, n; \ j \neq k) \right. \right\}
$$

we obtain

$$
S_{-\alpha,\beta,\eta}^{\alpha,\beta,\eta} f(x) = -\frac{1}{\Gamma(\alpha + 1)} \cdot \sum_{k=1}^n \frac{\partial}{\partial x_k} \left[x_k \int_1^\infty t^{n-\alpha-1} (t - 1)^\alpha \ 2F1 \left(\alpha + \beta, -\eta; 1 + \alpha; 1 - \frac{1}{t} \right) f(x_1t, \cdots, x_nt) dt \right].
$$

3. Fractional Integrals on Space $\mathcal{M}_c \left(\mathbb{R}^n_+ \right)$

Let $f^*(\sigma)$ be the one-dimensional Mellin transform of a function $f(\tau)$ such that $\tau^{\sigma-1} f(\tau) \in L_1(\mathbb{R}_+)$ [7]

$$
\mathfrak{M} \{ f \} (\sigma) = f^*(\sigma) = \int_0^\infty \tau^{\sigma-1} f(\tau) d\tau.
$$

If $\text{Re}(s_j) > 0 \ (j = 1, \cdots, n)$ and $\tau^{s-1} f(\tau) \in L_1(\mathbb{R}_+)$, then it is proved in [8] that the n-dimensional Mellin transform of $f(\max[x_1, \cdots, x_n])$ can be evaluated with the help of its one-dimensional Mellin transform as

$$
\int_{\mathbb{R}^n_+} x^{s-1} f(\max[x_1, \cdots, x_n]) dx = \frac{s_1}{s^1} s^1 f^*(s.1),
$$

where s^1 means the product $s_1 \cdots s_n$. Similarly, if $\text{Re}(s_j) < 0 \ (j = 1, \cdots, n)$ and $\tau^{s-1} f(\tau) \in L_1(\mathbb{R}_+)$, then [8]

$$
\int_{\mathbb{R}^n_+} x^{s-1} f(\min[x_1, \cdots, x_n]) dx = (-1)^{n-1} \frac{s_1}{s^1} s^1 f^*(s.1).
$$

First we try to find the fractional integrals of the elementary function x^{-s}. We have

$$
S_{+\alpha,\beta,\eta}^{\alpha,\beta,\eta} x^{-s} = \frac{1}{\Gamma(\alpha + 1)} \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \int_{\mathbb{R}^n_+} \left[\min \left\{ \frac{x_1}{t_1}, \cdots, \frac{x_n}{t_n} \right\} - 1 \right]^\alpha
$$

$$
\cdot 2F1 \left(\alpha + \beta, \alpha + \eta; 1 + \alpha; 1 - \text{min} \left\{ \frac{x_1}{t_1}, \cdots, \frac{x_n}{t_n} \right\} \right) t^{-s} dt
$$

$$
= \frac{1}{\Gamma(\alpha + 1)} \frac{\partial^n x^{1-s}}{\partial x_1 \cdots \partial x_n} \int_{\mathbb{R}^n_+} \left[\min \{ t_1, \cdots, t_n \} - 1 \right]^\alpha
$$

$$
\cdot 2F1 \left(\alpha + \beta, \alpha + \eta; 1 + \alpha; 1 - \text{min} \{ t_1, \cdots, t_n \} \right) t^{-2} dt.
$$
Since the function $2F_1(\alpha + \beta, \alpha + \eta; 1 + \alpha; 1 - t)$ has the asymptotics $O(t^{-\text{Re}(\alpha) - \min[\text{Re}(\beta), \text{Re}(\eta)]})$ at infinity and $O(1)$ at $t = 1$, then $t^{(s-1)\alpha} 2F_1(\alpha + \beta, \alpha + \eta; 1 + \alpha; 1 - t) \in L_1(\mathbb{R}_+)$, provided that $\text{Re}(s.1) < n + \min[\text{Re}(\beta), \text{Re}(\eta)]$ and $\text{Re}(\alpha) > -1$. Hence, if

$$
(3.4) \quad \text{Re}(\alpha) > -1; \quad \text{Re}(s_j) < 1 \quad (j = 1, \ldots, n); \quad \text{Re}(s.1) < n + \min[\text{Re}(\beta), \text{Re}(\eta)],
$$

one can apply formula (3.2) to the last integral in (3.3). Using formula [3, §8.4.49.24]

$$
\mathfrak{M} \left\{ (x - 1)^{c-1} 2F_1(a, b; c; 1 - x) \right\} (s) = \frac{\Gamma(c) \Gamma(1 + a - c - s) \Gamma(1 + b - c - s)}{\Gamma(1 - s) \Gamma(1 + a + b - c - s)}
$$

for $\text{Re}(c) > 0, \text{Re}(s) > 1 + \min[\text{Re}(a - c), \text{Re}(b - c)]$, we get

$$
\int_{\mathbb{R}_+^n} t^{s-2} [\min \{t_1, \ldots, t_n\} - 1]_+^\alpha 2F_1(\alpha + \beta, \alpha + \eta; 1 + \alpha; 1 - \min \{t_1, \ldots, t_n\}) \ dt = (-1)^{n-1} \frac{(s.1 - n) \Gamma(\alpha + 1) \Gamma(\beta + n - s.1) \Gamma(\eta + n - s.1)}{(s - 1)^1 \Gamma(1 + n - s.1) \Gamma(\alpha + \beta + \eta + n - s.1)}
$$

under the conditions (3.4). Thus

$$
(3.5) \quad S_{s.1}^{\alpha, \beta, \eta} x^{-s} = \frac{\Gamma(\beta + n - s.1) \Gamma(\eta + n - s.1)}{\Gamma(n - s.1) \Gamma(\alpha + \beta + \eta + n - |s|)} x^{-s}
$$

provided the conditions (3.4) are satisfied.

Similarly, using formula [3, §8.4.49.22]

$$
\mathfrak{M} \left\{ (1 - x)^{c-1} 2F_1(a, b; c; 1 - x) \right\} (s) = \frac{\Gamma(c) \Gamma(s) \Gamma(s + c - a - b)}{\Gamma(s + c - a) \Gamma(s + c - b)}
$$

for $\text{Re}(c) > 0, \text{Re}(s) > \max[0, \text{Re}(a + b - c)]$ and formula (3.1), we obtain

$$
(3.6) \quad S_{s.1}^{\alpha, \beta, \eta} x^{-s} = \frac{\Gamma(1 - n + s.1) \Gamma(1 - \beta + \eta - n + s.1)}{\Gamma(1 - \beta - n + s.1) \Gamma(1 + \alpha + \eta - n + s.1)} x^{-s}
$$

provided $\text{Re}(\alpha) > -1; \quad \text{Re}(s_j) > 1 \quad (j = 1, \ldots, n); \quad \text{Re}(s.1) > n + \text{Re}(\beta - \eta) - 1$.

Let now $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$ and

$$
\int_{(c) - i\infty}^{(c) + i\infty} f^*(s) ds = \int_{c_1 - i\infty}^{c_1 + i\infty} \cdots \int_{c_n - i\infty}^{c_n + i\infty} f^*(s) ds_1 \cdots ds_n.
$$

The space $\mathfrak{M}_c(\mathbb{R}_+^n)$ is defined in [8] through the set of entire functions of exponential type. It is proved there that $f \in \mathfrak{M}_c(\mathbb{R}_+^n)$ if and only if f can be represented as the inverse Mellin transform

$$
f(x) = \frac{1}{(2\pi i)^n} \int_{(c) - i\infty}^{(c) + i\infty} f^*(s) x^{-s} ds
$$

5
of a function $f^*(s)$ infinitely differentiable and with compact support on $((c) - i\infty, (c) + i\infty)$.

Theorem 1. a) Let $\Re(\alpha) > 0$; $c_j + \Re(d_j) < 1$ $(j = 1, \ldots, n)$; $\alpha + \beta + \eta + n - d.1 - c.1 \neq 0, -1, \cdots; c.1 + \Re(d.1) < n + \min[\Re(\beta), \Re(\eta)]$. Then $x^d S^{\alpha, \beta, \eta}_{+n} x^{-d}$ is a homeomorphism of the space $\mathcal{M}_c \left(\mathbb{R}^n_+ \right)$ onto itself. Moreover, it can be written in the form

$$\Gamma(\beta + n - d.1 - s.1) \Gamma(\eta + n - d.1 - s.1) \ f^*(s)x^{-s}ds. \tag{3.7}$$

b) Let $\Re(\alpha) > 0$; $c_j + \Re(d_j) > 1$ $(j = 1, \ldots, n)$; $-\beta - n + d.1 + c.1 \neq -1, -2, \cdots; \alpha + \eta - n + d.1 + c.1 \neq -1, -2, \cdots; c.1 + \Re(d.1) > n + \Re(\beta - \eta) - 1$. Then $x^d S^{\alpha, \beta, \eta}_{-n} x^{-d}$ is a homeomorphism of the space $\mathcal{M}_c \left(\mathbb{R}^n_+ \right)$ onto itself, moreover,

$$\Gamma(1 - n + d.1 + s.1) \Gamma(1 - \beta + \eta - n + d.1 + s.1) \ f^*(s)x^{-s}ds. \tag{3.8}$$

Proof. We consider now the operator $x^d S^{\alpha, \beta, \eta}_{+n} x^{-d}$. The proof for the operator $x^d S^{\alpha, \beta, \eta}_{-n} x^{-d}$ follows in a similar manner. Since $f \in \mathcal{M}_c \left(\mathbb{R}^n_+ \right)$ we have

$$x^d S^{\alpha, \beta, \eta}_{-n} x^{-d} f(x) = x^d S^{\alpha, \beta, \eta}_{-n} x^{-d} \left(\frac{1}{(2\pi i)^n} \int_{(c) - i\infty}^{(c) + i\infty} f^*(s)x^{-s}ds \right). \tag{3.9}$$

The interchange of the order of integration is possible, since $f^*(s)$ has a compact support. Using now formula (3.6), we obtain (3.8). Function

$$\frac{\Gamma(1 - n + d.1 + s.1) \Gamma(1 - \beta + \eta - n + d.1 + s.1)}{\Gamma(1 - \beta - n + d.1 + s.1) \Gamma(1 + \alpha + \eta - n + d.1 + s.1)} f^*(s)$$

has a compact support and is infinitely differentiable on $((c) - i\infty, (c) + i\infty)$ if and only if so does $f^*(s)$. Hence $x^d S^{\alpha, \beta, \eta}_{-n} x^{-d}$ is a bijection on $\mathcal{M}_c \left(\mathbb{R}^n_+ \right)$. The continuity of the mapping $f \to x^d S^{\alpha, \beta, \eta}_{-n} x^{-d}$ in $\mathcal{M}_c \left(\mathbb{R}^n_+ \right)$ is also obvious.
Let $d = 0$ in Theorem 1, then we obtain

Corollary. a) Let $\text{Re}(\alpha) > 0$; $c_j < 1$ $(j = 1, \ldots, n)$; $\alpha + \beta + \eta + n - c.1 \neq 0, -1, \cdots$; $c.1 < n + \min \{\text{Re}(\beta), \text{Re}(\eta)\}$. Then $S_{\alpha,\beta,\eta}^{\alpha,\beta,\eta}$ is a homeomorphism of the space $M_n^c \left(\mathbb{R}^n_+ \right)$ onto itself and

$$
S_{\alpha,\beta,\eta}^{\alpha,\beta,\eta} f(x) = \frac{1}{(2\pi i)^n} \int_{(c)-i\infty}^{(c)+i\infty} \frac{\Gamma(\beta + n - s.1)\Gamma(\eta + n - s.1)}{\Gamma(n - s.1)\Gamma(\alpha + \beta + \eta + n - s.1)} f^*(s)x^{-s}ds.
$$

b) Let $\text{Re}(\alpha) > 0$; $c_j > 1$ $(j = 1, \ldots, n)$; $-\beta - n + c.1 \neq -1, -2, \cdots$; $\alpha + \eta - n + c.1 \neq -1, -2, \cdots$; $c.1 > n + \text{Re}(\beta - \eta) - 1$. Then the operator $S_{\alpha,\beta,\eta}^{\alpha,\beta,\eta}$ is a homeomorphism of the space $M_n^c \left(\mathbb{R}^n_+ \right)$ onto itself and

$$
S_{\alpha,\beta,\eta}^{\alpha,\beta,\eta} f(x) = \frac{1}{(2\pi i)^n} \int_{(c)-i\infty}^{(c)+i\infty} \frac{\Gamma(1 - n + s.1)\Gamma(1 - \beta + \eta - n + s.1)}{\Gamma(1 - \beta - n + s.1)\Gamma(1 + \alpha + \eta - n + s.1)} f^*(s)x^{-s}ds.
$$

4. Fractional Integrals in L_2-spaces

Let the condition of Theorem 1, a) be satisfied. Let $f \in M_n^c \left(\mathbb{R}^n_+ \right)$. Since $f^*(s)$ has a compact support and is continuous on $\left((c) - i\infty, (c) + i\infty\right)$, then $f^*(s) \in L_2 \left((c) - i\infty, (c) + i\infty\right)$. Hence, by the Plancherel theorem for the Mellin transform [1] $x^{c-1/2}f(x) \in L_2 \left(\mathbb{R}^n_+ \right)$ and

$$
\|x^{c-1/2}f(x)\|_{L_2(\mathbb{R}^n_+)} = \frac{1}{(2\pi)^n} \|f^*(s)\|_{L_2((c)-i\infty,(c)+i\infty)}.
$$

Using the Plancherel theorem now for the function $x^dS_{\alpha,\beta,\eta}^{\alpha,\beta,\eta} x^{-d}f(x)$ instead of $f(x)$, and remembering that its Mellin transform is

$$
\mathcal{M} \left\{x^dS_{\alpha,\beta,\eta}^{\alpha,\beta,\eta} x^{-d}f(x)\right\}(s) = \frac{\Gamma(\beta + n - d.1 - s.1)\Gamma(\eta + n - d.1 - s.1)}{\Gamma(n - d.1 - s.1)\Gamma(\alpha + \beta + \eta + n - d.1 - s.1)} f^*(s),
$$

(see formula (3.7)) we obtain

$$
\|x^{c+d-1/2}S_{\alpha,\beta,\eta}^{\alpha,\beta,\eta} x^{-d}f(x)\|_{L_2(\mathbb{R}^n_+)} = \frac{1}{(2\pi)^n} \left\| \frac{\Gamma(\beta + n - d.1 - s.1)\Gamma(\eta + n - d.1 - s.1)}{\Gamma(n - d.1 - s.1)\Gamma(\alpha + \beta + \eta + n - d.1 - s.1)} f^*(s) \right\|_{L_2((c)-i\infty,(c)+i\infty)}.
$$
From the Stirling formula for the Gamma function [2] we see that (4.2) is uniformly bounded with respect to \(s \in ((c) - i\infty, (c) + i\infty)\), or more precisely, that it decays like \(|s|^{-\alpha}\) as \(|s| \to \infty\) on \(((c) - i\infty, (c) + i\infty)\). Hence

\[
\left\| \frac{\Gamma(\beta + n - d.1 - s.1)\Gamma(\eta + n - d.1 - s.1)}{\Gamma(n - d.1 - s.1)\Gamma(\alpha + \beta + \eta + n - d.1 - s.1)} f^*(s) \right\|_{L_2((c) - i\infty, (c) + i\infty)} \leq M \| f^*(s) \|_{L_2((c) - i\infty, (c) + i\infty)}.
\]

Using now formula (4.1) we get

\[
(4.3) \quad \left\| x^{c+d-1/2} s_{a_{\alpha},b_{\beta},c_{\gamma}} x^{-d} f(x) \right\|_{L_2(\mathbb{R}^n_+)} \leq M \left\| x^{c-1/2} f(x) \right\|_{L_2(\mathbb{R}^n_+)}.
\]

Similarly, if the condition of Theorem 1, b) is satisfied and \(f \in M_c \left(\mathbb{R}^n_+ \right)\), then

\[
(4.4) \quad \left\| x^{c+d-1/2} s_{a_{\alpha},b_{\beta},c_{\gamma}} x^{-d} f(x) \right\|_{L_2(\mathbb{R}^n_+)} \leq M \left\| x^{c-1/2} f(x) \right\|_{L_2(\mathbb{R}^n_+)}.
\]

Since the set of compactly supported and infinitely differentiable functions on \((c) - i\infty, (c) + i\infty\) is dense in \(L_2 \left((c) - i\infty, (c) + i\infty \right)\) in \(L_2\)-topology, from the Plancherel theorem for the Mellin transform we see that the space \(M_c \left(\mathbb{R}^n_+ \right)\) is dense in the space \(L_2 \left(\mathbb{R}^n_+; x^{c-1/2} \right)\) of functions \(f : \mathbb{R}^n_+ \to \mathbb{C}\) such that

\[
\|f\|_{L_2(\mathbb{R}^n_+; x^{c-1/2})} \equiv \left\{ \int_{\mathbb{R}^n_+} \left| x_1^{c_1-1/2} \cdots x_n^{c_n-1/2} f(x) \right|^2 \, dx \right\}^{1/2} < \infty.
\]

Thus from (4.3) and (4.4) we find that \(x^d s_{a_{\alpha},b_{\beta},c_{\gamma}} x^{-d}\) and \(x^d s_{a_{\alpha},b_{\beta},c_{\gamma}} x^{-d}\) can be extended from \(M_c \left(\mathbb{R}^n_+ \right)\) into bounded operators in \(L_2 \left(\mathbb{R}^n_+; x^{c-1/2} \right)\). It is not difficult to prove that, in this case, the extended operators \(s_{a_{\alpha},b_{\beta},c_{\gamma}} \) and \(s_{a_{\alpha},b_{\beta},c_{\gamma}} \) have the same forms as (2.1) and (2.2). We have just obtained

Theorem 2. Let conditions of Theorem 1, a) be satisfied for the operator \(x^d s_{a_{\alpha},b_{\beta},c_{\gamma}} x^{-d}\), and of Theorem 1, b) for \(x^d s_{a_{\alpha},b_{\beta},c_{\gamma}} x^{-d}\). Then the operators \(x^d s_{a_{\alpha},b_{\beta},c_{\gamma}} x^{-d}\) and \(x^d s_{a_{\alpha},b_{\beta},c_{\gamma}} x^{-d}\) are bounded in \(L_2 \left(\mathbb{R}^n_+; x^{c-1/2} \right)\).

5. Integration by Parts

8
The following formula connects operators $S_{+;n}^{\alpha,\beta,n}$ and $S_{-;n}^{\alpha,\beta,n}$ in the manner similar to the relation between the Riemann-Liouville and the Weyl fractional integral operators.

Theorem 3. Let $f \in \mathcal{M}_c \left(\mathbb{R}_+^n \right)$ and $g \in \mathcal{M}_{1-\text{Re}(d)-c} \left(\mathbb{R}_+^n \right)$ and $d.1 = 1 - n - \beta$. Then
\begin{equation}
(5.1) \quad \int_{\mathbb{R}_+^n} x^{-d} g(x) S_{+;n}^{\alpha,\beta,n} f(x) dx = \int_{\mathbb{R}_+^n} x^{-d} f(x) S_{-;n}^{\alpha,\beta,n} g(x) dx,
\end{equation}
provided that $\text{Re}(\alpha) > 0; c_j < 1, c_j + \text{Re}(d_j) < 0, (j = 1, \cdots, n); c.1 < n + \min[\text{Re}(\beta), \text{Re}(\eta)]; c.1 + \text{Re}(d.1) < 1 - \text{Re}(\beta - \eta)$.

Proof. Under the conditions of Theorem 3 the operator $S_{+;n}^{\alpha,\beta,n}$ is a homeomorphism on $\mathcal{M}_c \left(\mathbb{R}_+^n \right)$ and $S_{-;n}^{\alpha,\beta,n}$ on $\mathcal{M}_{1-\text{Re}(d)-c} \left(\mathbb{R}_+^n \right)$. We have
\begin{align*}
\int_{\mathbb{R}_+^n} x^{-d} g(x) S_{+;n}^{\alpha,\beta,n} f(x) dx &= \int_{\mathbb{R}_+^n} x^{-d} g(x) \frac{1}{(2\pi i)^n} \int_{(c)-i\infty}^{(c)+i\infty} \frac{\Gamma(\beta + n - s.1)\Gamma(\eta + n - s.1)}{\Gamma(n - s.1)\Gamma(\alpha + \beta + \eta + n - s.1)} f^*(s)x^{-s} ds dx \\
&= \frac{1}{(2\pi i)^n} \int_{(c)-i\infty}^{(c)+i\infty} \frac{\Gamma(\beta + n - s.1)\Gamma(\eta + n - s.1)}{\Gamma(n - s.1)\Gamma(\alpha + \beta + \eta + n - s.1)} f^*(s) \int_{\mathbb{R}_+^n} x^{-d-s} g(x) dx ds \\
&= \frac{1}{(2\pi i)^n} \int_{(c)-i\infty}^{(c)+i\infty} \frac{\Gamma(\beta + n - s.1)\Gamma(\eta + n - s.1)}{\Gamma(n - s.1)\Gamma(\alpha + \beta + \eta + n - s.1)} f^*(s)g^*(1 - d - s) ds.
\end{align*}
By changing s by $1 - d - s$ we get
\begin{equation}
(5.2) \quad \int_{\mathbb{R}_+^n} x^{-d} g(x) S_{+;n}^{\alpha,\beta,n} f(x) dx
\end{equation}
\begin{align*}
&= \frac{1}{(2\pi i)^n} \int_{(1-\text{Re}(d)-c)-i\infty}^{(1-\text{Re}(d)-c)+i\infty} \frac{\Gamma(\beta + d.1 + s.1)\Gamma(\eta + d.1 + s.1)}{\Gamma(d.1 + s.1)\Gamma(\alpha + \beta + \eta + d.1 + s.1)} g^*(s) \int_{\mathbb{R}_+^n} x^{-d-s} f(x) dx ds \\
&= \int_{\mathbb{R}_+^n} x^{-d} f(x) \frac{1}{(2\pi i)^n} \int_{(1-\text{Re}(d)-c)-i\infty}^{(1-\text{Re}(d)-c)+i\infty} \frac{\Gamma(\beta + d.1 + s.1)\Gamma(\eta + d.1 + s.1)}{\Gamma(d.1 + s.1)\Gamma(\alpha + \beta + \eta + d.1 + s.1)} x^{-s} g^*(s) ds dx.
\end{align*}
Using the assumption $d.1 = 1 - n - \beta$, the last inner integral becomes
\begin{align*}
&\frac{1}{(2\pi i)^n} \int_{(1-\text{Re}(d)-c)-i\infty}^{(1-\text{Re}(d)-c)+i\infty} \frac{\Gamma(1 - n + s.1)\Gamma(1 - \beta + \eta - n + s.1)}{\Gamma(1 - \beta - n + s.1)\Gamma(1 + \alpha + \eta - n + s.1)} g^*(s)x^{-s} ds. \\
&= S_{-;n}^{\alpha,\beta,n} g(x).
\end{align*}
Hence, formula (5.1) is proved.

6. Transformation and Index Laws

In view of the Mellin inversion type expressions (3.10) and (3.11) of the operators $S_{+;n}^{\alpha,\beta,\eta}$ and $S_{-;n}^{\alpha,\beta,\eta}$, we can easily find out that under the same assumptions as Corollary of Theorem 1 there hold the formulas

\[(6.1) \quad S_{+;n}^{\alpha,\beta,\eta} f(x) = S_{+;n}^{\alpha,\beta} f(x), \]
\[(6.2) \quad S_{-;n}^{\alpha,\beta,\eta} f(x) = S_{-;n}^{\alpha-\eta,\alpha-\beta} f(x). \]

Such formulas can be obtained from Theorem 1 for each of the operators as follows:

Theorem 4. a) Let $\text{Re}(\alpha) > 0$; $c_j < 1 - \max[0, \text{Re}(g_j)]$ (j = 1, ⋯, n) with g.1 = \(-\alpha - \beta - \eta\); c.1 < n + min[Re(\beta), Re(\eta)]. Then in $\mathcal{M}_c(\mathbb{R}_+^n)$ there holds the relation

\[(6.3) \quad S_{+;n}^{\alpha,\beta,\eta} f(x) = x^g S_{+;n}^{\alpha-\eta,\alpha-\beta} x^{-g} f(x). \]

b) Let $\text{Re}(\alpha) > 0$; $c_j > 1 - \min[0, \text{Re}(g_j)]$ (j = 1, ⋯, n) with g.1 = \(-\beta + \eta\); \(-\beta - n + c.1 \neq -1, -2, \cdots; \alpha + \eta - n + c.1 \neq -1, -2, \cdots\); Then in $\mathcal{M}_c(\mathbb{R}_+^n)$ there holds the relation

\[(6.4) \quad S_{-;n}^{\alpha,\beta,\eta} f(x) = x^g S_{-;n}^{\alpha-\eta,\beta} x^{-g} f(x). \]

Theorem 5. Let $\text{Re}(\alpha) > -\text{Re}(\beta) > 0$ and $f \in \mathcal{M}_c(\mathbb{R}_+^n)$.

a) If $c_j + \max[0, \text{Re}(d_j)] < 1$ (j = 1, ⋯, n); n - c.1 \neq 0, -1, ⋯; c.1 < n + \text{Re}(\beta)$; c.1 < n - \text{Re}(\alpha + \beta) - \text{Re}(d.1), then

\[(6.5) \quad S_{+;n}^{\alpha,\beta-\alpha-\beta-d.1} f(x) = X_{+;n}^{\alpha-\beta} x^d X_{+;n}^{\alpha+\beta} x^{-d} f(x) = x^d X_{+;n}^{\alpha+\beta} x^{-d} X_{+;n}^{\alpha-\beta} f(x). \]

b) If $c_j + \max[0, \text{Re}(d_j)] < 1$ (j = 1, ⋯, n); n - c.1 \neq 0, -1, ⋯; c.1 < n - \max[\text{Re}(\alpha + \beta), \text{Re}(d.1 - \beta)]$, then

\[(6.6) \quad S_{+;n}^{\alpha-\beta,\beta-\alpha-\beta-d.1} f(x) = X_{+;n}^{\alpha+\beta} x^d X_{+;n}^{\alpha-\beta} x^{-d} f(x) = x^d X_{+;n}^{\alpha-\beta} x^{-d} X_{+;n}^{\alpha+\beta} f(x). \]
c) If \(c_j + \min[0, \Re(d_j)] > 1 \quad (j = 1, \ldots, n); \quad -\beta - n + c.1 \neq -1, -2, \ldots; \quad \beta + d.1 - n + c.1 \neq -1, -2, \ldots; \quad c.1 > n - 1 - \min[0, \Re(d.1)], \) then

\[
S_{-n}^{\alpha, \beta + d.1} f(x) = X_{-n}^{-\beta} x^d X_{-n}^{\alpha + \beta} x^{-d} f(x) = x^d X_{-n}^{\alpha + \beta} x^{-d} X_{-n}^{-\beta} f(x).
\]

(6.7)

\[
S_{-n}^{\alpha, \beta + d.1} f(x) = X_{-n}^{-\beta} x^d X_{-n}^{\alpha + \beta} x^{-d} f(x) = x^d X_{-n}^{\alpha + \beta} x^{-d} X_{-n}^{-\beta} f(x).
\]

d) If \(c_j + \min[0, \Re(d_j)] > 1 \quad (j = 1, \ldots, n); \quad -\beta - n + d.1 + c.1 \neq -1, -2, \ldots; \quad \alpha + \beta - n + c.1 \neq -1, -2, \ldots; \quad c.1 > n - 1 - \min[0, \Re(d.1)], \) then

(6.8)

\[
S_{-n}^{\alpha, \beta + d.1} f(x) = X_{-n}^{-\beta} x^d X_{-n}^{\alpha + \beta} x^{-d} f(x) = x^d X_{-n}^{\alpha + \beta} x^{-d} X_{-n}^{-\beta} f(x).
\]

Proof. We prove only the first part of (6.5). Under the corresponding conditions, all operators \(S_{-n}^{\alpha, \beta - \alpha - \beta - d.1}, X_{-n}^{-\beta}, X_{-n}^{\alpha + \beta}\) are homeomorphism in \(\mathcal{M}_c \left(\mathbb{R}_+^n \right) \). We have, by referring to formula \([8, (5.2)]\) for \(f \in \mathcal{M}_c \left(\mathbb{R}_+^n \right)\),

\[
X_{-n}^{-\beta} x^d X_{-n}^{\alpha + \beta} x^{-d} f(x)
= X_{-n}^{-\beta} \left(\frac{1}{(2\pi i)^n} \int_{(c)-i\infty}^{(c)+i\infty} \frac{\Gamma(n - \alpha - \beta - d.1 - s.1)}{\Gamma(n - d.1 - s.1)} f^*(s)x^{-s} ds \right)
= \frac{1}{(2\pi i)^n} \int_{(c)-i\infty}^{(c)+i\infty} \frac{\Gamma(n + \beta - s.1) \Gamma(n - \alpha - \beta - d.1 - s.1)}{\Gamma(n - s.1) \Gamma(n - d.1 - s.1)} f^*(s)x^{-s} ds
= S_{-n}^{\alpha, \beta, \beta + d.1} f(x).
\]

The other formulas are proved by similar ways using formulas \([8, (5.2), (5.5)]\).

Theorem 6. Let \(\Re(\alpha) > 0, \Re(\gamma) > 0\) and \(f \in \mathcal{M}_c \left(\mathbb{R}_+^n \right)\).

a) If \(c_j + \max[0, \Re(d_j)] < 1 \quad (j = 1, \ldots, n); \quad \alpha + \beta - \gamma - d.1 + n - c.1 \neq 0, -1, \ldots; \quad c.1 < n + \min[\Re(\beta), \Re(-\gamma - d.1)], \) then

(6.9)

\[
S_{+n}^{\alpha + \gamma, \beta - \gamma - d.1} f(x) = x^d X_{+n}^{\gamma} x^{-d} S_{+n}^{\alpha, \beta - d.1} f(x) = S_{+n}^{\alpha, \beta, -d.1} x^d X_{+n}^{\gamma} x^{-d} f(x).
\]

b) If \(c_j + \max[0, \Re(d_j)] < 1 \quad (j = 1, \ldots, n); \quad -d.1 + n - c.1 \neq 0, -1, \ldots; \quad c.1 < n + \min[\Re(\beta), \Re(-\alpha - \beta - \gamma - d.1)], \) then

(6.10)

\[
S_{+n}^{\alpha + \gamma, \beta - \alpha - \gamma - d.1} f(x) = x^d X_{+n}^{\gamma} x^{-d} S_{+n}^{\alpha, \beta - \gamma - d.1} f(x)
= S_{+n}^{\alpha, \beta, -\alpha - \beta - \gamma - d.1} x^d X_{+n}^{\gamma} x^{-d} f(x).
\]

11
c) If \(c_j + \min[0, \Re(d_j)] > 1 \) \((j = 1, \cdots, n)\); \(-\beta - n + c.1 \neq -1, -2, \cdots; \gamma + d.1 - n + c.1 \neq -1, -2, \cdots; c.1 > n + \Re(\alpha + \beta - d.1) - 1\), then

\[
(6.11) \quad S_{\gamma-\alpha}^{\alpha+\gamma, \beta, -\alpha+d.1} f(x) = x^d X_{\gamma-\alpha}^{\alpha+\gamma, \beta} x^{-d} S_{\gamma-\alpha}^{\alpha+\gamma, \beta, -\alpha+d.1} f(x) = S_{\gamma-\alpha}^{\alpha+\gamma, \beta, -\alpha+d.1} x^d X_{\gamma-\alpha}^{\alpha+\gamma, \beta} x^{-d} f(x).
\]

\[
(6.12) \quad S_{\gamma-\alpha}^{\alpha+\gamma, \beta, \beta+d.1} f(x) = x^d X_{\gamma-\alpha}^{\alpha+\gamma, \beta} x^{-d} S_{\gamma-\alpha}^{\alpha+\gamma, \beta, \beta+d.1} f(x) = S_{\gamma-\alpha}^{\alpha+\gamma, \beta, \beta+d.1} x^d X_{\gamma-\alpha}^{\alpha+\gamma, \beta} x^{-d} f(x).
\]

The proof of Theorem 6 is similar to that of Theorem 5. Using Theorem 4 one can get more other similar formulas.

7. Modified Fractional Derivatives

Since \(S_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} \) is a homeomorphism of \(\mathfrak{M} \left(\mathbb{R}^n_+ \right) \) onto itself if \(\Re(\alpha) > 0; \Re(c_j) < 1 \) \((j = 1, \cdots, n)\); \(\alpha + \beta + \eta - c.1 \neq -n, -n - 1, \cdots; \Re(c.1) < n + \min[\Re(\beta), \Re(\eta)] \), then there exists its inverse operator which we will define as \(\left(S_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} \right)^{-1} \). This operator is also a homeomorphism of \(\mathfrak{M} \left(\mathbb{R}^n_+ \right) \) onto itself. Suppose now the condition of part a) of Theorem 5 is satisfied. Then formula (6.3) is valid. Hence, if we remember that the inverse of \(X_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} \) is \(X_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} \) [8], we obtain

\[
(7.1) \quad \left(S_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} \right)^{-1} = X_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} x^d X_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} x^{-d}
\]

with \(d.1 = -\alpha - \beta - \eta \). Let \(k \) be an integer, \(k > \Re(\alpha) \). Then using Theorem 6 from [8]

\[
x^b X_{\gamma-\alpha}^{\alpha+\gamma, \beta} x^{-b} X_{\gamma-\alpha}^{\alpha+\gamma, \beta} = X_{\gamma-\alpha}^{\alpha+\gamma, \beta + k}
\]

with \(b.1 = \beta \) proved there for \(\Re(\beta) > 0 \), but still valid for other value of \(\Re(\beta) \), if \(X_{\gamma-\alpha}^{\alpha+\gamma, \beta} \) is considered as the modified fractional differential operator in \(\mathfrak{M} \left(\mathbb{R}^n_+ \right) \) when \(\Re(\beta) \leq 0 \) [8], we obtain

\[
(7.2) \quad x^b X_{\gamma-\alpha}^{\alpha+\gamma, \beta} x^{-b} \left(S_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} \right)^{-1} = X_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} x^d X_{\gamma-\alpha}^{\alpha+\gamma, \beta, \eta} x^{-d}
\]

12
with $b.1 = \beta$ and $d.1 = -\alpha - \beta - \eta$. Since $k > \text{Re}(\alpha)$, the right hand side of (7.2) is $S^{k-\alpha, -\beta - k, 2\alpha + 2\beta + \eta}_{+;n}$ by (6.5). Hence

$$\text{(7.3)} \quad (S^{\alpha, \beta, \eta}_{+;n})^{-1} = (x^b X^{k-b}_{+;n} x^{-b}) S^{k-\alpha, -\beta - k, 2\alpha + 2\beta + \eta}_{+;n}.$$

Using formula (7.5) from [8] for $X^{k-b}_{+;n}$ we obtain formula for the inverse of the fractional integral

$$\text{(7.4)} \quad (S^{\alpha, \beta, \eta}_{+;n})^{-1} f(x) = x^b \prod_{j=1}^{k} \left(n - j + x_1 \frac{\partial}{\partial x_1} + \cdots + x_n \frac{\partial}{\partial x_n} \right) \left[x^{-b} S^{k-\alpha, -\beta - k, 2\alpha + 2\beta + \eta}_{+;n} \right] f(x)$$

if $c_j < 1$ $(j = 1, \cdots, n)$; $b.1 = \beta \alpha + \beta + \eta + n - c.1 \neq 0, -1, \cdots; c.1 < n + \min[\text{Re}(\beta), \text{Re}(\eta), \text{Re}(-\beta - k), \text{Re}(2\alpha + 2\beta + \eta)].$

Similarly, the inverse for the operator $S^{\alpha, \beta, \eta}_{-;n}$ can be expressed in the way

$$\text{(7.5)} \quad (S^{\alpha, \beta, \eta}_{-;n})^{-1} f(x) = x^b (-1)^k \prod_{j=1}^{k} \left(n - j + x_1 \frac{\partial}{\partial x_1} + \cdots + x_n \frac{\partial}{\partial x_n} \right) \left[x^{-b} S^{k-\alpha, -\beta - k, -2\beta + \eta - k}_{-;n} \right] f(x)$$

with $b.1 = \beta$ and k being any integer such that $k > \text{Re}(\alpha)$, if $c_j > 1$ $(j = 1, \cdots, n)$; $\beta + k - n + c.1 \neq -1, -2, \cdots; -\alpha - 2\beta + \eta - n + c.1 \neq -1, -2, \cdots; c.1 > n + \text{Re}(\beta - \eta) - 1$.

References

