ON THE GENERALIZED CONVOLUTIONS
FOR FOURIER COSINE AND SINE TRANSFORMS

NGUYEN XUAN THAO, KAKICHEV V.A.

Novgorod University, St. Petersburg str. 41
Novgorod 173003, Russia

and

VU KIM TUAN

Department of Mathematics and Computer Science
Faculty of Science, Kuwait University
P.O. Box 5969, Safat 13060, Kuwait

Abstract. A generalized convolution for the Fourier cosine and sine transforms is introduced, its properties and applications to integral equations are considered.

Key phrases. Fourier cosine and Fourier sine transforms, convolution, integral equations.

1. Introduction

Generalized convolution of functions f and g under three operators K, K_1, K_2, and with some weight-function γ is a function, denoted by the symbol $f * g$, such that the following factorization property holds [5]:

$$K(f * g)(x) = \gamma(x)(K_1f)(x)(K_2g)(x).$$

(1.1)

If $K = K_1 = K_2$ we have the usual classical convolution [3,4]. For example, for $K = K_1 = K_2 = F_c$ – the Fourier cosine transform [8]

$$ (F_c f)(x) = \sqrt{\frac{2}{\pi}} \int_0^{\infty} f(y) \cos xy \, dy, $$

(1.2)
the convolution has the form [8]

\[(f \ast g)(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(y)[g(|x-y|) + g(x+y)]dy, \quad (1.3)\]

and the property (1.1) holds

\[F_c(f \ast g)(x) = (F_c f)(x) (F_c g)(x). \quad (1.4)\]

Otherwise, there appear "exotic" convolutions. An example of generalized convolutions was first introduced by Churchill [1]

\[(f \ast g)(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(y)[g(|x-y|) - g(x+y)]dy, \quad (1.5)\]

and the respective factorization property (1.1) for (1.5) has the form

\[F_s(f \ast g)(x) = (F_s f)(x) (F_c g)(x), \quad (1.6)\]

where \(F_s\) is the Fourier sine transform [8]

\[(F_s f)(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(y) \sin xy dy. \quad (1.7)\]

Many authors have been studied similar convolutions for Hankel’s transform [10], Stieltjes’ transform [9], Hilbert’s transform [2], G-transform [7], and integral transforms of Mellin convolution type [6,12]. The present work is devoted to investigate properties of another generalized convolution for Fourier cosine and sine transforms, different from (1.5), and its application to a linear system of integral equations.

2. The generalized convolution

Definition 1. A generalized convolution for the Fourier cosine and sine transforms is defined as follows:

\[(f \ast g)(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(y)[\text{sign}(y-x)g(|y-x|) + g(y+x)]dy. \quad (2.1)\]
Theorem 1. Let \(f, g \in L(R_+) \), then the convolution \(f \ast g \) belongs to \(L(R_+) \) and

\[
F_c(f \ast g)(x) = (F_s f)(x)(F_s g)(x), \quad x \in R_+. \tag{2.2}
\]

Proof. We have

\[
\int_0^\infty |(f \ast g)(x)| \, dx \leq \frac{1}{\sqrt{2\pi}} \int_0^\infty \int_0^\infty |(f(y))| \, dx + \int_0^\infty |g(x)| \, dx
\]

\[
\leq \frac{1}{\sqrt{2\pi}} \int_0^\infty |f(y)| \, dy \left[\int_0^\infty |g(y)| \, dy + \int_0^\infty |g(x)| \, dx \right] = \sqrt{\frac{2}{\pi}} \int_0^\infty |f(y)| \, dy \int_0^\infty |g(x)| \, dx < \infty.
\]

Hence, the convolution (2.2) belongs to \(L(R_+) \). Furthermore,

\[
(F_s f)(x)(F_s g)(x) = \frac{2}{\pi} \int_0^\infty \int_0^\infty \sin xu \sin xv f(u)g(v) \, du \, dv
\]

\[
= \frac{1}{\pi} \int_0^\infty \int_0^\infty \cos x(u-v) f(u)g(v) \, du \, dv - \frac{1}{\pi} \int_0^\infty \int_0^\infty \cos x(u+v) f(u)g(v) \, du \, dv
\]

\[
= \frac{1}{\pi} \int_0^\infty \int_0^\infty \cos x t [f(y)g(y+t) + f(y+t)g(y)]dy \, dt - \frac{1}{\pi} \int_0^\infty \int_0^t \cos x t f(y)g(t-y)dy \, dt
\]

\[
= \frac{1}{\pi} \int_0^\infty \cos x t \left[\int_0^\infty f(y)g(y+t)dy + \int_t^\infty f(y)g(y-t)dy - \int_0^t f(y)g(t-y)dy \right] dt
\]

\[
= \frac{1}{\pi} \int_0^\infty \cos x t \left[\int_0^\infty f(y)g(y+t)dy + \int_0^\infty \text{sign}(y-t)f(y)g(|y-t|)dy \right] dt
\]

\[
F_c(f \ast g)(x) = F_c(f \ast g)(x).
\]

Theorem 1 is thus proved.

Remark 1: Formulas (1.4) and (2.2) show that the convolution \(f \ast g \) and \(f \ast g \) are commutative. On the other hand, the convolution \(f \ast g \) is non-commutative:

\[
f \ast g = -g \ast f + \sqrt{\frac{2}{\pi}} f \ast L g, \tag{2.3}
\]

4
where f^*_Lg is the Laplace convolution

$$ (f^*_Lg)(x) = \int_0^x f(y) g(x - y) \, dy. \quad (2.4) $$

Indeed, we have

$$ (f \ast g)(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty f(y)[g(|x - y|) - g(x + y)] \, dy $$

$$ = \frac{1}{\sqrt{2\pi}} \left\{ \int_{-x}^\infty f(x + s) g(|s|) \, ds - \int_x^\infty f(s - x) g(s) \, ds \right\} $$

$$ = \frac{1}{\sqrt{2\pi}} \left\{ \int_0^\infty g(s)[f(x + s) - f(|s - x|)] \, ds + \int_{-x}^0 f(x + s) g(|s|) \, ds + \int_x^\infty f(|s - x|) g(s) \, ds \right\} $$

$$ = - (g \ast f)(x) + \sqrt{\frac{2}{\pi}} (f^*_Lg)(x). $$

Remark 2: Convolution (2.1) was introduced implicitly, but incorrectly in [8], where the term sign($y - x$) was missing.

Theorem 2. Let the functions f, g, h belong to $\in L(R_+)$. Then the following formulas hold

\[
(f \ast g) \ast h = (f \ast h) \ast g = f \ast (g \ast h), \tag{2.5}
\]

\[
f^0 (g \ast h) = g^2 (h \ast f) = h^2 (g \ast f), \tag{2.6}
\]

\[
f^1 (g \ast h) = g^1 (f \ast h) = h^1 (f \ast g), \tag{2.7}
\]

\[
f^0 (g \ast h) = g^0 (f \ast h) = h^0 (f \ast g). \tag{2.8}
\]

The proof follows easily from formulas (1.4), (1.6) and (2.2). For example, we have

$$ F_s[(f^\frac{1}{2} g)^\frac{1}{2} h] = F_s(f^\frac{1}{2} g)F_c(h) = F_s(f)F_c(g)F_c(h) $$

$$ = [F_s(f)F_c(h)]F_c(g) = F_s(f^\frac{1}{2} h)F_c(g) $$
Hence, \((f \ast h) \ast g = (f \ast g) \ast h\). On the other hand,
\[
F_s[(f \ast g) \ast h] = F_s(f)F_c(g)F_c(h) = F_s((f \ast g) \ast h).
\]
Therefore, \((f \ast g) \ast h = f \ast (g \ast h)\), and formula (2.5) is proved. By the same way, one can verify the other parts, too.

3. Applications to integral equations

We consider the following linear system of integral equations:

\[
\begin{align*}
\varphi(x) + \lambda_1 \int_0^\infty k(x, y)\psi(y)dy &= f(x), \quad (3.1) \\
\psi(x) + \lambda_2 \int_0^\infty h(x, y)\varphi(y)dy &= g(x), \quad x \in R_+.
\end{align*}
\]

where \(\varphi\) and \(\psi\) are unknown functions, \(f\) and \(g\) are given functions, \(\lambda_1\) and \(\lambda_2\) denote complex parameters, and \(k(x, y)\) and \(h(x, y)\) are the kernels that can be expressed in the form

\[
\begin{align*}
k(x, y) &= k_1(|x - y|) - k_1(x + y), \\
h(x, y) &= \text{sign}(y - x)h_1(|x - y|) + h_1(x + y).
\end{align*}
\]

Applying the Fourier sine transform to equation (3.1) and the Fourier cosine transform to equation (3.2) and using the convolution formulas (1.6) and (2.2) we obtain a linear system of algebraic equations

\[
\begin{align*}
F_s(\varphi) + \sqrt{2\pi} \lambda_1 F_c(\psi)F_s(k_1) &= F_s(f), \\
F_c(\psi) + \sqrt{2\pi} \lambda_2 F_s(\varphi)F_s(h_1) &= F_c(g).
\end{align*}
\]

Suppose that

\[
1 - 2\pi \lambda_1 \lambda_2 (F_s(k_1)(x)(F_s(h_1))(x) \neq 0
\]

for any \(x \in R_+\). Then the linear system (3.4) has the solution

\[
F_s(\varphi) = [F_s(f) - \sqrt{2\pi} \lambda_1 F_c(g)F_s(k_1)]/[1 - 2\pi \lambda_1 \lambda_2 F_s(k_1)F_s(h_1)],
\]
\[F_c(\psi) = \left[F_c(g) - \sqrt{2\pi\lambda_2} F_s(f) F_s(h_1) \right] / \left[1 - 2\pi\lambda_1\lambda_2 F_s(k_1) F_s(h_1) \right]. \]

(3.6)

Consider the function \(\nu(t) = 2\pi\lambda_1\lambda_2 t / (1 - 2\pi\lambda_1\lambda_2 t) \) with \(t = F_c(k_1 \ast h_1) = F_s(k_1) F_s(h_1) \). Since \(\nu(t) \) is analytic under the condition (3.5) and \(\nu(0) = 0 \), by the Wiener-Levi theorem there exists a function \(l \in L(R_+) \) such that

\[F_c(l) = 2\pi\lambda_1\lambda_2 F_s(k_1) F_s(h_1) / [1 - 2\pi\lambda_1\lambda_2 F_s(k_1) F_s(h_1)]. \]

(3.7)

Hence, we obtain

\[F_s(\varphi) = \left[F_s(f) - \sqrt{2\pi\lambda_1} F_c(g) F_s(k_1) \right] [1 + F_c(l)] \]

\[= F_s(f) - \sqrt{2\pi\lambda_1} F_s(k_1 \ast g) + F_s(f \ast l) - \sqrt{2\pi\lambda_1} F_s((k_1 \ast g) \ast l). \]

Therefore,

\[\varphi = f - \sqrt{2\pi\lambda_1} k_1 \ast g + f \ast l - \sqrt{2\pi\lambda_1} (k_1 \ast g) \ast l. \]

(3.8)

Similarly, we have

\[F_c(\psi) = \left[F_c(g) - \sqrt{2\pi\lambda_2} F_s(f) F_s(h_1) \right] / \left[1 - 2\pi\lambda_1\lambda_2 F_s(k_1) F_s(h_1) \right] \]

\[= F_c(g) - \sqrt{2\pi\lambda_2} F_c(f \ast h_1) + F_c(l \ast g) - \sqrt{2\pi\lambda_2} F_c(l \ast (f \ast h_1)). \]

Consequently,

\[\psi = g - \sqrt{2\pi\lambda_2} f \ast h_1 + l \ast g - \sqrt{2\pi\lambda_2} (l \ast (f \ast h_1)). \]

(3.9)

References

5. Kakichev V.A. and Nguyen Xuan Thao. On the design method for the
6. Nguyen Thanh Hai and Yakubovich S.B. The double Mellin-Barnes type
integrals and their applications to convolution theory. World Scientific, Sin-
7. Saigo M. and Yakubovich S.B. On the theory of convolution integrals for
1972.
9. Srivastava H.M. and Vu Kim Tuan. A new convolution theorem for the
Stieltjes transform and its application to a class of singular integral equa-
10. Vu Kim Tuan and Megumi Saigo. Convolution of Hankel transform and
its application to an integral involving Bessel function of first kind. Internat.
11. Yakubovich S.B. On the constructive method of integral convolutions
12. Yakubovich S.B. and Luchko Yu.F. The hypergeometric approach to in-