2. Partial Derivative and Tangent Planes

2.4. Gradients and Directional Derivatives

We can use partial derivatives to work out the slope of \(z = f(x, y) \) in the \(x \) direction; \(\frac{\partial f}{\partial x} \), or in the \(y \) direction; \(\frac{\partial f}{\partial y} \). But what is the slope in the \(y = x \) direction?

First we need a more precise definition of the direction using vectors:

Let \(\mathbf{i} \) be a unit vector in the \(x \) direction and let \(\mathbf{j} \) be a unit vector in the \(y \) direction. A unit vector is a vector whose magnitude is 1.

A vector in the \(y = x \) direction is \(\mathbf{v} = \mathbf{i} + \mathbf{j} \). But this is not a unit vector, as it's magnitude \(||\mathbf{v}|| = \sqrt{1^2 + 1^2} = \sqrt{2} \). So we divide by \(||\mathbf{v}|| \) to get a unit vector.

\[
\mathbf{u} = \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j}) \text{ is a unit vector in the } y = x \text{ direction.}
\]

Suppose as an example we wanted to find the slope of \(f(x, y) = 4 - x^2 - 4y^2 \) at \((a, b)\) in the \(y = x \) direction. Say we move a short distance \(h \) in that direction. Then we could get an approximate slope by calculating the corresponding change in height \(f \), that is \(\Delta f \). Then the slope is \(\frac{\Delta f}{h} \).

Now since \(\mathbf{u} = \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j}) \) is a unit vector in the \(y = x \) direction it follows that

\[
h\mathbf{u} = \frac{h}{\sqrt{2}}\mathbf{i} + \frac{h}{\sqrt{2}}\mathbf{j}
\]

is a vector of length \(h \) in that direction.

So moving a distance \(h \) in the \(y = x \) direction implies a distance \(\Delta x = \frac{h}{\sqrt{2}} \) in the \(x \) direction and a distance \(\Delta y = \frac{h}{\sqrt{2}} \) in the \(y \) direction.

Now we can see that the corresponding change in height would be

\[
\Delta f = f(a + \frac{h}{\sqrt{2}}, b + \frac{h}{2}) - f(a, b).
\]

But \(h \) is small so we can use linear approximations;

\[
\Delta f \simeq \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y
\]
where here \(\Delta x = \frac{h}{\sqrt{2}} \) and \(\Delta y = \frac{h}{\sqrt{2}} \) and we know how to calculate

\[
\frac{\partial f}{\partial x}(a, b) \quad \text{and} \quad \frac{\partial f}{\partial y}(a, b).
\]

So

\[
\Delta f \approx \frac{\partial f}{\partial x} \frac{h}{\sqrt{2}} + \frac{\partial f}{\partial y} \frac{h}{\sqrt{2}}.
\]

which implies that the slope in the \(\left(\frac{1}{\sqrt{2}} i + \frac{1}{\sqrt{2}} j \right) \) direction is

\[
\frac{\Delta f}{h} \approx \frac{1}{\sqrt{2}} \frac{\partial f}{\partial x} + \frac{1}{\sqrt{2}} \frac{\partial f}{\partial y}.
\]

Now let \(h \to 0 \). Then the rate of change of \(f \) is \(\frac{1}{\sqrt{2}} \frac{\partial f}{\partial x} + \frac{1}{\sqrt{2}} \frac{\partial f}{\partial y} \) in the direction \(u = \frac{1}{\sqrt{2}} i + \frac{1}{\sqrt{2}} j \).

Back to the example.

If \(f(x, y) = 4 - x^2 - 4y^2 \) and \((a, b) = (1, 1) \) then

\[
\frac{\partial f}{\partial x}(1, 1) = -2x \bigg|_{(1,1)} = -2
\]

and

\[
\frac{\partial f}{\partial y}(1, 1) = -8y \bigg|_{(1,1)} = -8,
\]

So the slope in the \(u = \frac{1}{\sqrt{2}} i + \frac{1}{\sqrt{2}} j \) direction is

\[
= \frac{1}{\sqrt{2}}(-2) + \frac{1}{\sqrt{2}}(-8) = \frac{-10}{\sqrt{2}} = -5\sqrt{2}.
\]

The rate of change of \(f \) in the direction \(u \) is called a **directional derivative**.

Directional Derivatives.

The directional derivative in the direction \(u = u_1 i + u_2 j \), where \(||u|| = 1 \), at \((a, b) \) is

\[
f_u (a, b) = \frac{\partial f}{\partial x}(a, b)u_1 + \frac{\partial f}{\partial y}(a, b)u_2
\]

and it is simply the slope of the surface \(f(x, y) \) in the direction \(u \). (But remember \(u \) must be a unit vector.)
Example. If \(f(x, y) = x^2 - 3y^2 + 6y \). Find the slope at \((1, 0)\) in the direction \(i - 4j \).

Now \(\|i - 4j\| = \sqrt{1 + 16} = \sqrt{17} \).

So \(u = \frac{1}{\sqrt{17}}(i - 4j) \) is a unit vector in the direction \(i - 4j \).

Now slope \(\frac{\partial f}{\partial x}(1, 0) = \frac{\partial f}{\partial y}(1, 0) \left(\frac{-4}{\sqrt{17}} \right) \),

\[
\frac{\partial f}{\partial x}(1, 0) = 2x \bigg|_{(1,0)} = 2
\]

and

\[
\frac{\partial f}{\partial y}(1, 0) = (-6y + 6) \bigg|_{(1,0)} = 6.
\]

So slope \(f_u(1, 0) = \frac{2}{\sqrt{17}} - \frac{6.4}{\sqrt{17}} = -\frac{22}{\sqrt{17}} \).

The Gradient Vector

Another way to picture the directional derivative in the direction \(u \)

\[
f_u(a, b) = f_x(a, b)u_1 + f_y(a, b)u_2
\]

is to think of the gradient, or slope, as a vector itself.

\[
\text{grad } f(a, b) = \nabla f(a, b) = f_x(a, b)i + f_y(a, b)j.
\]

For example if \(f(x, y) = x^2 - 3(y - 1)^2 + 3 \)

\[
\nabla f = 2x \mathbf{i} - 6(y - 1) \mathbf{j}
\]

or

\[
\nabla f(1, 0) = 2 \mathbf{i} + 6 \mathbf{j}.
\]

Then the directional derivative is just the dot product of \(\nabla f \) with \(u \) since

\[
\nabla f \cdot u = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot (u_1 \mathbf{i} + u_2 \mathbf{j}) = f_x u_1 + f_y u_2
\]

\[
\Rightarrow f_u(a, b) = \nabla f(a, b) \cdot u
\]

and this is a much easier formula to use.
Example. If \(g(x, y) = e^{x^2} \cos y \) find the directional derivative of \(g(x, y) \) at \((1, \pi)\) in the direction \((-3i + 4j)\).

First we need to find the unit vector in the given direction. Now \(\| -3i + 4j \| = \sqrt{9 + 16} = 5 \). So \(u = -\frac{3}{5} i + \frac{4}{5} j \).

Next find the gradient vector at \((1, \pi)\):

\[
\nabla g = \frac{\partial g}{\partial x} i + \frac{\partial g}{\partial y} j = 2xe^{x^2} \cos y i - e^{x^2} \sin y j
\]

\[
\nabla g(1, \pi) = 2e^1(-1)i - 0j = -2e^1
\]

\[
\nabla g(1, \pi) \cdot (\frac{-3}{5} i + \frac{4}{5} j) = \frac{6e}{5}.
\]

Example. Find the slope of \(f(x, y) = 1 - x^2 - y^2 \) at \((0, 1)\) in the direction \((i - j)\). First \(u = \frac{1}{\sqrt{2}} (i - j) \) is the unit vector in the given direction.

\[
\nabla f = -2xi - 2yj \Rightarrow \nabla f(1, 0) = -2i.
\]

So slope is \(f_u = \nabla f \cdot u = + \frac{2}{\sqrt{2}} = \sqrt{2} \). The gradient vector provides an easy way to calculate the slope in any direction but can we give it a geometrical interpretation?

Consider the contour diagram of a plane \(z = f(x, y) = mx + ny + c \).

The contours \(y = \frac{-m}{n} x + \frac{z_0 - c}{n} \) have slope \(\frac{-m}{n} \) in the \((x, y)\) plane.

The gradient vector, \(mi + nj \), is perpendicular to the contours. Also it points in the direction of increasing \(f \). In fact the direction in which it points is the direction of greatest slope.

But what if \(f(x, y) \) is not a plane.

Consider \(f(x, y) = x^2 + y^2 \). The contours are circles. \(\nabla f = 2xi + 2yj \) which points radially out. Once again \(\nabla f \) points in the direction of greatest slope, perpendicular to the contour lines.

Properties of the Gradient Vector \(\nabla f \)
The direction of $\nabla f(a, b)$ is perpendicular to the contour line through (a, b) and in the direction of increasing f. In fact the direction and magnitude of steepest slope at (a, b) is given by $\nabla f(a, b)$.

Example. $T(x, y) = 20 - 4x^2 - y^2$ describes the temperature on the surface of a metal plate. x and y are in cm and T is in °C.

In what direction from $(2, -3)$ does the temperature increase most rapidly?

The direction is simply $\nabla T = \frac{\partial T}{\partial x} \hat{i} + \frac{\partial T}{\partial y} \hat{j} = -8x\hat{i} - 2y\hat{j}$. So

$$\nabla T(2, -3) = -16\hat{i} + 6\hat{j}$$

The direction in terms of angles is $\pi - \arctan \left(\frac{6}{16} \right)$.

Example. A team of oceanographers are mapping the ocean floor to assist in the recovery of a sunken ship. Using sonar they develop the model

$$D = 250 - 30x^2 - 50\sin \left(\frac{\pi y}{2} \right),$$

where x and y are distance in km, D is depth in meters, and $-2 \leq x \leq 2$ and $-2 \leq y \leq 2$.

(a) Change the model to obtain a graph of the ocean floor.

Let $h(x, y)$ be the height above -250 below sea level. Then $D + h = 250$ and

$$h(x, y) = 30x^2 + 50\sin \left(\frac{\pi y}{2} \right).$$

(b) The ship is located at $(1, 0.5)$. What is its depth?

$$D(1, 0.5) = 250 - 30 - 50\sin \frac{\pi}{4} \approx 184.6 \text{m}.$$

(c) Determine the steepness of the ocean floor in the positive x direction and in the positive y direction. Finally, determine the magnitude and direction of greatest rate of change of depth from the position of the ship.

Slope in the x direction is

$$\frac{\partial h}{\partial x}(1, 0.5) = 60x \bigg|_{(1, 0.5)} = 60.$$
But we must be careful here because \(h \) is in meters while \(x \) and \(y \) are in kilometers. So in fact the slope is \(\frac{60}{1000} = 0.06 \).

Slope in the \(y \) direction is

\[
\frac{\partial h}{\partial y}(1, 0.5) = \frac{50\pi}{2} \cos \frac{\pi y}{2} \bigg|_{(1,0.5)} = 25\pi \cos \frac{\pi}{4} = \frac{25}{\sqrt{2}} \pi.
\]

So slope is \(\frac{25}{\sqrt{2.1000}} \pi = \frac{\pi}{40\sqrt{2}} \).

The direction of greatest rate of change is given by

\[
\nabla h = \frac{60i + \frac{25\pi}{\sqrt{2}}j}{1000}
\]

or \(\arctan \left(\frac{\frac{25\pi}{60\sqrt{2}}}{\frac{5\pi}{12\sqrt{2}}} \right) \) and the magnitude is \(\sqrt{3600 + \frac{625\pi^2}{2}} \).