Abstract: In this sequential talk we will give a proof of the following result: Let \(\{p_k\}_{k=1}^{\infty} \) be a sequence of real numbers on \((0, \infty)\), that is either convergent to \(p \in (0, \infty) \), or \(p_k = \alpha k + \beta \) for some \(\alpha, \beta > 0 \), and any \(k > 0 \). Let \(F(z) \) be a Hardy function on the right-half plane. Put

\[
F_{A_n}^*(z) = \sum_{k,l=1}^{n} F(p_k) \frac{\tilde{a}_{kl}^n}{z + p_l},
\]

where

\[
\tilde{a}_{kl}^n = \frac{\prod_{j=1}^{n} \frac{\left((p_k + p_j)(p_l + p_j) \right) \prod_{j=1}^{n} (p_k - p_j) \prod_{j=1, j \neq k}^{n} (p_l - p_j)}{(p_k + p_l) \prod_{j=1, j \neq k}^{n} (p_k - p_j) \prod_{j=1, j \neq l}^{n} (p_l - p_j)}}.
\]

Then

\[
\lim_{n \to \infty} F_{A_n}^*(z) = F(z), \quad \Re(z) > 0,
\]

where the convergence is pointwise and in the Hardy space norm.

All are welcome.