# INTRODUCTION TO STATISTICS

Frances Chumney, PhD



What are statistics?

## UNDERSTANDING STATISTICS



#### **UNDERSTANDING STATISTICS**

# Statistics is a set of mathematical procedures for organizing, summarizing, & interpreting information

- Purpose
  - Organize & understand information
  - Facilitate communication
  - Answer research questions by indicating what conclusions are justified given the data collected



group vs. subgroup

# POPULATIONS VS. SAMPLES



#### **POPULATIONS**

- Population: Entire target group we would like to study
  - ❖ Example Research Question: How do political views of men & women differ?
    - Population 1: Men (all men)
    - Population 2: Women (all women)
  - Populations can be large or small
    - Example Populations
      - Men (implies all men in existence)
      - Adult men in the U.S.
      - Adult men in the U.S. who are registered voters
      - Adult men in the U.S. who are registered voters in the state of Georgia
  - Researcher is responsible for specifying population(s) of interest



### **SAMPLES**

- Sample: Subgroup or subset of units/individuals from the population meant to represent the population we would like to study
  - Motivation for Sampling
    - Populations vary in size
    - Impossible to have complete, accurate list of members (sampling frame) for some populations
    - Not feasible to collect data from all members of some populations (even with a complete, accurate sampling frame)

Statistics allow us to generalize from a sample to the population



#### **POPULATIONS** ←→ **SAMPLES**

#### statistics allow us to generalize from a sample to the population





parameter vs. statístic, descriptive vs. inferential

# **TYPES OF STATISTICS**



### PARAMETERS & STATISTICS

- Parameter: Value that describes a population
- > Statistic: Value that describes a sample
- Every parameter has a corresponding statistic
  - Notation differs
  - Calculations may differ



#### **DESCRIPTIVE & INFERENTIAL**

Descriptive Statistics

statistical procedures used to summarize, organize, simplify data

Inferential Statistics

techniques that allow us to study a sample & make generalizations about the populations from which the sample was selected

- Samples = Problems
  - Provide limited information about populations
  - ❖ Representative of population ≠ microcosm of population
  - Sampling Error

the discrepancy, or amount of error, that exists between a sample statistic & its corresponding population parameter



### **DESCRIPTIVE & INFERENTIAL**

Example: Presence of Sampling Error

Population of 1000 college students

**Population Parameters** 

Average Age = 21.3 years

**Average IQ = 112.5** 

65% Women, 35% Men

Sample #1

Eric, Jessica, Laura Karen, Brian

**Sample Statistics** 

Average Age = 19.8

Average IQ = 104.6

60% Women, 40% Men

Sample #2

Tom, Kristen, Sara Andrew, John

**Sample Statistics** 

Average Age = 20.4

Average IQ = 114.2

40% Women, 60% Men

standardized system for communicating mathematical functions

# STATISTICAL NOTATIONS



#### Summation Notation

- Most statistics computations involve adding (summing)
- $\Sigma$  = Summation (sigma) = read as "the sum of"
- $\star$   $\Sigma X$  = "the sum of X values" or "sum of scores"
- Example

$$\circ$$
  $\Sigma X = 10+6+7+4 = 27$ ,  $N = 4$ 



- Summation Notation
  - Order of Mathematical Operations

Please Excuse My Dear Aunt Sally

- Parentheses
- Exponents
- Multiply & Divide in order from left to right
- Addition indicated using Σ
- Other addition & subtraction, in order from left to right



#### Summation Notation Examples

 $\Delta X = \text{sum of scores}$ 

$$8+3+5+1+6=23$$

❖  $\Sigma X^2$  = sum of squared scores

$$8^2 + 3^2 + 5^2 + 1^2 + 6^2 = 64 + 9 + 25 + 1 + 36 = 135$$

•  $(\Sigma X)^2$  = squared sum of scores; sum of scores, squared  $(8+3+5+1+6)^2 = (23)^2 = 529$ 



#### Summation Notation Examples

\* 
$$\Sigma(X-1)$$
 = sum of  $X$  - 1 values  
(8-1) + (3-1) + (5-1) + (1-1) + (6-1) = 7+2+4+0 +5 = 18

\* 
$$\Sigma(X-1)^2$$
 = sum of squared  $X$  - 1 values  

$$(8-1)^2 + (3-1)^2 + (5-1)^2 + (1-1)^2 + (6-1)^2 = 7^2 + 2^2 + 4^2 + 0^2 + 5^2 =$$



#### Summation Notation Examples

$$\star \Sigma Y = \text{sum of Y values}$$

$$6+2+4+3+5=20$$

\* 
$$\Sigma XY = \text{sum of } XY \text{ products}$$
  
(8×6) + (3×2) + (5×4) + (1×3) + (6×5) = 48+6+20+3+30= 107

