Instructor: Kuykendall
E-mail: West Georgia - kkuylkend@westga.edu
Class Time/Place – Monday (6:50 p.m. – 8:40 p.m.) TLC 3108
Office Hours – Wednesday (7:00 p.m. – 8:00 p.m.)
Office Phone – (678-839-6029)
Cell Phone – (863-589-7426)

Materials
1. All required lab supplies are included in the laboratory fee for the course.
2. MeasureNet Access
3. Scientific Calculator (Recommend TI-84 Plus)

Tardiness / Missed Lab: Lab attendance is mandatory. Unexcused absences not related to official school activities will result in a grade of zero. No make-up labs will be permitted. At the beginning of each laboratory we will discuss the laboratory. You must be present. Lateness will be penalized by deduction from the grade for that lab.

Preparation for Each Lab: The labs will require preparation and careful work to complete in the allotted time. Read all laboratory material before coming to lab. It is important that you understand the theory and procedure of the experiment. The lab material will be posted on CourseDen.

During the lab: Complete the weekly lab report and submit for approval before leaving. If the lab report is insufficient, modification will be requested before final submission is accepted. One report per student is required unless otherwise noted.

After the lab: Clean up the lab space, clean the glassware and put back in the drawer, and unplug hotplates (points will be deducted from lab grades for ignoring this requirement).

Academic Honesty: Plagiarism and cheating will not be tolerated. Students caught cheating will receive a zero for the assignment and possibly face further disciplinary action. See examples below depicting plagiarism in a lab setting.
What Counts as Plagiarism?

This course is one in which you will be working with a lab partner. To be clear, this does not mean that your lab reports are group reports. They are instead individual reports. What this means is that all of the following are examples of things that would be included as plagiarism:

- Dividing the lab in half and each person doing half of the assignment and then putting the halves together to create the final report.
- Having one person create all of the graphs and tables and send them to other group members for them to use
- Getting a copy of the lab from someone else and changing a few words and sentences so as to try and make it “different enough”.
- Getting a copy of the calculations from someone else even though you did the rest of the lab yourself.

Overall what this means is that you are supposed to do the write up portion of the lab on your own. No part of the lab should be a copy from someone else. However, you will be doing the labs together. This means that the actual data will be the same but no part of the lab write up should be copied from someone else (including copying someone but changing a few words).

Evaluation:

- Lab Reports/Assignments - (Submitted Weekly) 80%
- Lab Final 20%
Course Outline: This course introduces fundamental lab principles and applications of chemistry for science majors.

1. Students will evaluate the importance of curiosity, honesty, openness, and skepticism in science.
 a. Exhibit the above traits in their own scientific activities.
 b. Recognize that different explanations often can be given for the same evidence.
 c. Explain that further understanding of scientific problems relies on the design and execution of new experiments, which may reinforce or weaken opposing explanations.

2. Students will use standard safety practices for all classroom laboratory and field investigations.
 a. Follow correct procedures for use of scientific apparatus.
 b. Demonstrate appropriate techniques in all laboratory situations.
 c. Follow correct protocol for identifying and reporting safety problems and violations.

3. Students will identify and investigate problems scientifically.
 a. Suggest reasonable hypotheses for identified problems.
 b. Develop procedures for solving scientific problems.
 c. Collect, organize and record appropriate data.
 d. Graphically compare and analyze data points and/or summary statistics.
 e. Develop reasonable conclusions based on data collected.
 f. Evaluate whether conclusions are reasonable by reviewing the process and checking against other available information.

4. Students will use tools and instruments for observing, measuring, and manipulating scientific equipment and materials.
 a. Develop and use systematic procedures for recording and organizing information.
 b. Use technology to produce tables and graphs.
 c. Use technology to develop, test, and revise experimental or mathematical models.

5. Students will demonstrate the computation and estimation skills necessary for analyzing data and developing reasonable scientific explanations.
 a. Trace the source on any large disparity between estimated and calculated answers to problems.
 b. Consider possible effects of measurement errors on calculations.
 c. Recognize the relationship between accuracy and precision.
 d. Express appropriate numbers of significant figures for calculated data, using scientific notation where appropriate.
 e. Solve scientific problems by substituting quantitative values, using dimensional analysis and/or simple algebraic formulas as appropriate.

6. Students will communicate scientific investigations and information clearly.
 a. Write clear, coherent laboratory reports related to scientific investigations.
 b. Write clear, coherent accounts of current scientific issues, including possible alternative interpretations of the data.
 c. Use data as evidence to support scientific arguments and claims in written or oral presentations.
 d. Participate in-group discussions of scientific investigation and current scientific issues.
7. Students will analyze how scientific knowledge is developed.
 Students recognize that:
 a. The universe is a vast single system in which the basic principles are the same everywhere.
 b. Universal principles are discovered through observation and experimental verification.
 c. From time to time, major shifts occur in the scientific view of how the world works. More often, however, the changes that take place in the body of scientific knowledge are small modifications of prior knowledge. Major shifts in scientific views typically occur after the observation of a new phenomenon or an insightful interpretation of existing data by an individual or research group.
 d. Hypotheses often cause scientists to develop new experiments that produce additional data.
 e. Testing, revising, and occasionally rejecting new and old theories never ends.

8. Students will understand important features of the process of scientific inquiry.
 Students will apply the following to inquiry learning practices:

a. Scientific investigators control the conditions of their experiments in order to produce valuable data.
b. Scientific researchers are expected to critically assess the quality of data including possible sources of bias in their investigations’ hypotheses, observations, data analyses, and interpretations.
c. Scientists use practices such as peer review and publication to reinforce the integrity of scientific activity and reporting.
d. The merit of a new theory is judged by how well scientific data are explained by the new theory.
e. The ultimate goal of science is to develop an understanding of the natural universe which is free of biases.
f. Science disciplines and traditions differ from one another in what is studied, techniques used, and outcomes sought.
Tentative Lab Schedule:

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 13th</td>
<td>No Lab This Week</td>
</tr>
<tr>
<td>August 20th</td>
<td>Lab Syllabus, Lab Safety & Density</td>
</tr>
<tr>
<td>August 27th</td>
<td>Density of Water & Calcium Carbonate (Learning to use Excel)</td>
</tr>
<tr>
<td>September 3rd</td>
<td>No Lab (LABOR DAY)</td>
</tr>
<tr>
<td>September 10th</td>
<td>Inquiry Based Lab (Thickness of Aluminum Foil)</td>
</tr>
<tr>
<td>September 17th</td>
<td>Isotopes</td>
</tr>
<tr>
<td>September 24th</td>
<td>Lewis Structures & Resonance</td>
</tr>
<tr>
<td>October 1st</td>
<td>Molecular Modeling (VSEPR Theory)</td>
</tr>
<tr>
<td>October 8th</td>
<td>No Lab</td>
</tr>
<tr>
<td>October 15th</td>
<td>Separation of a Mixture</td>
</tr>
<tr>
<td>October 22nd</td>
<td>Stoichiometry (Day 1 – MeasureNet Data Collection)</td>
</tr>
<tr>
<td>October 29th</td>
<td>Stoichiometry (Day 2 – MeasureNet Data Collection)</td>
</tr>
<tr>
<td>November 5th</td>
<td>Vinegar Titration</td>
</tr>
<tr>
<td>November 12th</td>
<td>Calorimetry</td>
</tr>
<tr>
<td>November 19th</td>
<td>No Lab This Week</td>
</tr>
<tr>
<td></td>
<td>(Thanksgiving Holiday)</td>
</tr>
<tr>
<td>November 26th</td>
<td>Lab Final (Normal Class Time)</td>
</tr>
<tr>
<td>December 3rd</td>
<td>No Lab</td>
</tr>
</tbody>
</table>