Course Information
Class: Chem 1212 (11 – 10201; 12 – 10202; 13 – 10203; 14 – 10204)
Meeting Times: Lecture – M/W 11:00 am – 12:15 pm (Sections 11, 12, 13, 14)
 Workshop – Th 10:00 am – 11:30 pm (Section 11)
 W 5:00 pm – 6:30 pm (Section 12)
 Th 8:00 am – 9:30 am (Sections 13, 14)
Room: TLC 1301 (Lecture)
Modified Mastering Chemistry Course ID: mcphail26543

Course Description
Second course in a two-semester sequence covering the fundamental principles and applications of chemistry for science majors. Topics to be covered include chemical bonding, properties of solids, liquids and gases, solutions, equilibria, acids and bases, solubility, thermodynamics, kinetics, and electricity.

Required Materials:
Chemistry: Structure and Properties (2nd ed.) by Nivaldo J. Tro
Registration Code for Modified Mastering Chemistry program (included with new textbooks or available at www.pearsonmylabandmastering.com/northamerica/)
iClicker (available at the bookstore) either Gen 1 or 2

Learning Outcomes
1. Foundational Knowledge: Students will be able to use chemical terminology to describe chemical equilibria, kinetics, and phase behavior.
2. Foundational Knowledge: Students will be able to apply logical and mathematical reasoning skills to interpret provided chemical information.
3. Application: Students will apply their knowledge and thinking skills to interpret chemical observations.
4. Integration/Caring: Students will draw connections from course material to topics in other fields of study and modern scientific issues.
5. Learning to Learn: Students will develop methods for structuring their study habits, assess personal strengths/weaknesses, become a member of a learning team, and actively engage with text-based materials.
Course Assessment
Students’ progress towards mastery of the learning outcomes will be tracked and assessed via:

Workshop (10%)
Workshops are a key component of the department’s strategy to facilitate cooperative learning through peer-led, group work. Developing the skills to work and learn as a part of a team are fundamental to success at the undergraduate, graduate, and professional levels. Your attendance, participation, and performance in workshop will contribute towards your final grade.

Homework (10%)
Homework will be assigned and graded through the Pearson Modified Mastering Chemistry program. There will be a homework assignment posted after each class period and due before the start of the following class. This assignment will cover advanced application of the concepts covered in the previous lecture and basic ideas for the next lecture, so you will need to review material covered in the previous lecture as well read the sections from the text that will be covered in the next lecture. 10% credit is deducted per day late on any assignment.

Clicker Questions (10%)
Questions will be posed at various points during lecture to enable interactive feedback between students and instructor. Responses will be tracked and logged through the iClicker system, so it is necessary for you to bring a functioning iClicker to every class period. Using an iClicker registered to another student is cheating. Textbook sections listed on the schedule below should be read prior to class to prepare for potential questions.

Mid-term Exams (12.5% each; 50% total)
Four mid-term exams will be given in-class over the course of the semester. These exams will not be comprehensive; each exam will cover material covered in lecture since the previous exam. Non-graphing calculators will be permitted on each exam, but notes, reference materials, and devices with additional app functionality are not. A periodic table and sheet of equations will be provided with each exam. Sharing of calculators is prohibited.

Final Exam (20%)
The final will be the American Chemical Society standardized test, which will cover both Chemistry 1211 and 1212. Graphing/programmable calculators are not allowed on the final exam. The Final Exam score will replace the single lowest midterm exam score if the final exam score is higher.

<table>
<thead>
<tr>
<th>Grading Scale</th>
<th>Grade Calculation Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 90 – 100</td>
<td>Grade % = [(WS %) * 0.1] + [(HW %) * 0.1] + [(Clicker %) * 0.1] + [(Exam 1) * 0.125] + [(Exam 2) * 0.125] + [(Exam 3) * 0.125] + [(Exam 4) * 0.125] + [(Final Exam) * 0.2]</td>
</tr>
<tr>
<td>B 80 – 89</td>
<td></td>
</tr>
<tr>
<td>C 70 – 79</td>
<td></td>
</tr>
<tr>
<td>D 60 – 69</td>
<td></td>
</tr>
<tr>
<td>F 0 – 59</td>
<td></td>
</tr>
</tbody>
</table>
Course Policies and Information

‘Curving’ Policy
In the event that the average exam grade falls below 75%, exam grades will be adjusted or ‘curved’ using a linear scale to ensure an average exam grade of 75%.

Extra-Credit Policy
No extra credit is accepted for this course.

Make-up Policy
No make-up work will be given for this course. If an emergency forces a student to miss a day’s clicker question or homework assignment, that assignment will be waived only if official documentation is presented. A maximum of two exemptions total will be allowed. Make-up exams will only be given for cases where an exam must be missed for the performance of a separate university-sponsored activity. Such cases must be reported to and approved by the instructor no later than one week prior to the date of the exam.

Student Conduct
Students are obligated to abide by conduct guidelines as described in the university catalog. Respect and courtesy of all students while in the classroom is required. The following are also mandatory:

1. Any disruptive behavior will result in your expulsion from the room. If disruptive behavior persists you will receive a minimum of a one letter-grade deduction from your overall grade as well as possible additional action depending on the severity of the behavior.

2. All electronic devices must be silenced during lecture. Calls may only be answered in the case of emergencies by stepping out into the hall. Laptops and tablets are permitted, but if your use of these devices becomes disruptive their use will be disallowed for the remainder of the semester.

Please feel free to contact me with any questions regarding the above. Following “common sense” behavior should prevent any of the above problems. Failure to adhere to conduct guidelines could result in dismissal from class, a deduction from your final course grade, as well as further disciplinary action.

University Policies and Academic Support
Please review the Common Language for all university course syllabi at the address: https://www.westga.edu/administration/vpaa/assets/docs/faculty-resources/common_language_for_course_syllabi_v2.pdf
This document contains important information regarding Academic Support, Online Courses, Honor Code, Email Policy, Credit Hour Policy, and HB 280 (Campus Carry).
Academic Honesty
Any form of academic dishonesty—including but not limited to cheating or plagiarism—will result in a failing grade on the relevant assignment as well as possible additional action. Please be familiar with the definitions of academic dishonesty and plagiarism as laid out in the Student Handbook, which can be found at the link: http://www.westga.edu/handbook/

Disabilities Act / Accessibility for the Course
If you are a student with a disability as defined under the Americans with Disabilities Act and require assistance or support services, please notify me and provide me with a copy of your packet from Student Services. The university will provide you with resources for any audio/visual needs that you may have with the learning management system or course content.

It is critical that you contact UWG Accessibility Services immediately to find out what accommodations are necessary so we can work together to facilitate your success in this class. Please consult the UWG Accessibility Services site http://www.westga.edu/accessibility or call (678) 839-6428 for more details regarding accessibility for this course.

Note on Syllabus Modifications
I reserve the right to modify this syllabus at any time during the course of the term, particularly with regards to course schedule. Students will be notified of all syllabus modifications. In a case where a substantial modification is required, I will reissue a revised syllabus.
<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Wednesday</th>
</tr>
</thead>
</table>
| 1 | January 7
2E: 11.2, 11.3 1E: 12.2, 12.3
Review of Molecular Structure
Intermolecular Forces | January 9
2E: 11.4, 11.5 1E: 12.4, 12.5
Surface Tension, Viscosity, Capillary Action
Vaporization/Vapor Pressure |
| 2 | January 14
2E: 11.6, 11.7 1E: 12.6, 12.7
Sublimation/Fusion
Heating Curves | January 16
2E: 11.8, 13.2, 13.3 1E: 13.2, 14.2, 14.3
Phase Diagrams
Solubility & Solution Energetics |
| 3 | January 21
NO CLASSES | January 23
2E: 13.4, 13.5 1E: 14.4, 14.5
Solution Equilibria
Concentration Units |
| 4 | January 28
2E: 13.5, 13.6 1E: 14.5, 14.6
Concentration Units Continued
Colligative Properties | January 30
2E: 13.7 1E: 14.7
Colligative Properties Continued |
| 5 | February 4
Exam 1 | February 6
2E: 14.2 - 14.4 1E: 15.2 – 15.4
Collision Theory
Definition of Reaction Rates
Differential Rate Laws |
| 6 | February 11
2E: 14.5 - 14.6 1E: 15.5 - 15.6
Integrated Rate Laws & Half-Lives
Arrhenius Theory | February 13
2E: 14.7 - 15.5 1E: 15.7 – 16.5
Reaction Mechanisms & Catalysis
Equilibrium Constants |
| 7 | February 18
2E: 15.6 - 15.8 1E: 16.6 - 16.8
Reaction Quotients
Calculating Equilibrium []s | February 20
2E: 15.9 1E: 16.9
Le Châtelier’s Principle |
| 8 | February 25
Exam 2 | February 27
2E: 16.2 - 16.4 1E: 17.2 – 17.4
Acid/Base Strength
Last day to Withdraw |
| 9 | March 4
2E: 16.5 - 16.8 1E: 17.5 – 17.8
\(K_w, K_a, \text{ and } K_b \)
pH, pOH, p\(K_a \), p\(K_b \)
Strong Acid & Base Calculations | March 6
2E: 16.7, 16.8 1E: 17.7, 17.8
Weak Acid & Base Calculations |
| 10 | March 11
2E: 16.9, 16.11 1E: 17.9, 17.11
PpH of Salt Solutions
Lewis Acids and Bases | March 13
2E: 17.2, 17.3 1E: 18.2, 18.3
Buffers
Henderson-Hasselbalch |
<table>
<thead>
<tr>
<th>11</th>
<th>March 18</th>
<th>March 20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO CLASSES</td>
<td>NO CLASSES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>March 25</th>
<th>March 27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2E: 17.4 1E: 18.4</td>
<td>2E: 17.5 - 17.7 1E: 18.5 - 18.7</td>
</tr>
<tr>
<td></td>
<td>Acid/Base Titrations</td>
<td>Solubility Product Formation Constant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>April 1</th>
<th>April 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2E: 17.5 - 17.7 1E: 18.5 - 18.7</td>
<td>2E: 18.2 - 18.4, 18.7 1E: 19.2 - 19.4</td>
</tr>
<tr>
<td></td>
<td>Formation Constant</td>
<td>Entropy and Spontaneity Changes in Entropy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>April 8</th>
<th>April 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2E: 18.5, 18.6 1E: 19.5, 19.6</td>
<td>2E: 18.8 - 18.10 1E: 19.7 - 19.9</td>
</tr>
<tr>
<td></td>
<td>Entropy of Surroundings Gibbs Free Energy</td>
<td>ΔG for Nonstandard Cond. Calculating K from ΔG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>April 15</th>
<th>April 17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2E: 19.2 1E: 20.2</td>
<td>2E: 19.3, 19.4 1E: 20.3, 20.4</td>
</tr>
<tr>
<td></td>
<td>Identifying and Balancing Redox Reactions</td>
<td>Galvanic Cells Standard Electrode Potentials</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>April 22</th>
<th>April 24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E°_{cell}, ΔG°, and K</td>
<td>Batteries and Electrolysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17</th>
<th>April 29</th>
<th>April 29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exam 3</td>
<td>Exam 4</td>
</tr>
</tbody>
</table>

Final Exam: See Date and Time Posted by the Registrar *(Note that sometimes these dates change before the end of the semester. Keep up to date with the link below).*