Chemistry 1212
Principles of Chemistry II
Spring 2020

Instructor: Dr. Martin R. McPhail
Office: TLC 2129 Lab: TLC 2108
Phone #: (678) 839-6019 (Office)
(678) 839-6550 (Chem. Dept.)

Office Hours: M//Tu 1:00 pm – 5:00 pm
F 9:30 am – 11:30 am
E-mail: mmcphail@westga.edu

Course Information
Class: Chem 1212 (11 – 10183; 12 – 10184; 13 – 10185; 14 – 10186)
Meeting Times: Lecture – Tu/Th 11:00 am – 12:15 pm (Sections 11, 12, 13, 14)
Workshop – M 1:00 pm – 2:30 pm (Section 11, 12)
M 3:00 pm – 4:30 pm (Sections 13, 14)
Room: TLC 1301 (Lecture)
Modified Mastering Chemistry Course ID: mcphail30616

Course Description
Second course in a two-semester sequence covering the fundamental principles and applications
of chemistry for science majors. Topics to be covered include chemical bonding, properties of
solids, liquids and gases, solutions, equilibria, acids and bases, solubility, thermodynamics,
kinetics, and electricity.

Required Materials:
Chemistry: Structure and Properties (2nd or 1st ed.) by Nivaldo J. Tro
Registration Code for Modified Mastering Chemistry program (included with new textbooks or
available at www.pearsonmylabandmastering.com/northamerica/)
iClicker (available at the bookstore) either Gen 1 or 2

Learning Outcomes
1. Foundational Knowledge: Students will be able to use chemical terminology to describe
chemical equilibria, kinetics, and phase behavior.
2. Foundational Knowledge: Students will be able to apply logical and mathematical
reasoning skills to interpret provided chemical information.
3. Application: Students will apply their knowledge and thinking skills to interpret chemical
observations.
4. Integration/Caring: Students will draw connections from course material to topics in other
fields of study and modern scientific issues.
5. Learning to Learn: Students will develop methods for structuring their study habits, assess
personal strengths/weaknesses, become a member of a learning team, and actively engage
with text-based materials.
Course Assessment
Students’ progress towards mastery of the learning outcomes will be tracked and assessed via:

Workshop (10%)
Workshops are a key component of the department’s strategy to facilitate cooperative learning through peer-led, group work. Developing the skills to work and learn as a part of a team are fundamental to success at the undergraduate, graduate, and professional levels. Your attendance, participation, and performance in workshop will contribute towards your final grade.

Homework (10%)
Homework will be assigned and graded through the Pearson Modified Mastering Chemistry program. There will be a homework assignment posted after each class period and due before the start of the following class. This assignment may cover advanced application of the concepts covered in the previous lecture and basic ideas for the next lecture, so you will need to review material covered in the previous lecture as well read the sections from the text that will be covered in the next lecture. 10% credit is deducted per day late on any assignment.

Clicker Questions (10%)
Questions will be posed at various points during lecture to enable interactive feedback between students and instructor. Responses will be tracked and logged through the iClicker system, so it is necessary for you to bring a functioning iClicker to every class period. Using an iClicker registered to another student is cheating. Textbook sections listed on the schedule below should be read prior to class to prepare for potential questions.

Mid-term Exams (12.5% each; 50% total)
Four mid-term exams will be given in-class over the course of the semester. These exams will not be comprehensive; each exam will cover material covered in lecture since the previous exam. Non-graphing calculators will be permitted on each exam, but notes, reference materials, and devices with additional app functionality are not. A periodic table and sheet of equations will be provided with each exam. Sharing of calculators is prohibited.

Final Exam (20%)
The final will be the American Chemical Society standardized test, which will cover both Chemistry 1211 and 1212. Graphing/programmable calculators are not allowed on the final exam. The Final Exam score will replace the single lowest midterm exam score if the final exam score is higher.

Grading Scale Grade Calculation Formula
A 90 – 100 $\text{Grade} = [(\text{WS \%}) \times 0.1] + [(\text{HW \%}) \times 0.1] + [(\text{Clicker \%}) \times 0.1] + [(\text{Exam 1}) \times 0.125] + [(\text{Exam 2}) \times 0.125] + [(\text{Exam 3}) \times 0.125] + [(\text{Exam 4}) \times 0.125] + [(\text{Final Exam}) \times 0.2]$
B 80 – 89
C 70 – 79
D 60 – 69
F 0 – 59
Course Policies and Information

‘Curving’ Policy
In the event that the average exam grade falls below 75%, exam grades will be adjusted or ‘curved’ using a linear scale to ensure an average exam grade of 75%.

Extra-Credit Policy
No extra credit is accepted for this course.

Make-up Policy
Clicker Questions and Homework: No make-up clicker or homework assignment will be given. If an emergency forces a student to miss a day’s clicker question or homework assignment, that assignment will be waived *only if official documentation is presented.* A maximum of two exemptions total will be allowed.

Exams: Make-up exams will only be considered for cases of scheduling conflicts or emergencies where official documentation is provided. In the case of a *scheduling conflict,* the student must report the conflict to the instructor no later than one week prior to the date of the exam. In the case of a *documented emergency,* the student should contact the instructor within 24 hours of the exam. Make-up exams need to be scheduled before the lecture that follows the original exam. For example, Exam 1 is scheduled for January 29, so a make-up would have to be scheduled before the following lecture on February 3.

Student Conduct
Students are obligated to abide by conduct guidelines as described in the university catalog. Respect and courtesy of all students while in the classroom is required. The following are also mandatory:

1. Any disruptive behavior will result in your expulsion from the room. If disruptive behavior persists you will receive a minimum of a one letter-grade deduction from your overall grade as well as possible additional action depending on the severity of the behavior.
2. All electronic devices must be silenced during lecture. Calls may only be answered in the case of emergencies by stepping out into the hall. *Laptops and tablets are permitted,* but if your use of these devices becomes disruptive their use will be disallowed for the remainder of the semester.

Please feel free to contact me with any questions regarding the above. Following “common sense” behavior should prevent any of the above problems. Failure to adhere to conduct guidelines could result in *dismissal from class, a deduction from your final course grade, as well as further disciplinary action.*
University Policies and Academic Support
Please review the Common Language for all university course syllabi at the address: https://www.westga.edu/administration/vpaa/assets/docs/faculty-resources/common_language_for_course_syllabi_v2.pdf
This document contains important information regarding Academic Support, Online Courses, Honor Code, Email Policy, Credit Hour Policy, and HB 280 (Campus Carry).

Academic Honesty
Any form of academic dishonesty—including but not limited to cheating or plagiarism—will result in a failing grade on the relevant assignment as well as possible additional action. Please be familiar with the definitions of academic dishonesty and plagiarism as laid out in the Student Handbook, which can be found at the link: http://www.westga.edu/handbook/

Disabilities Act / Accessibility for the Course
If you are a student with a disability as defined under the Americans with Disabilities Act and require assistance or support services, please notify me and provide me with a copy of your packet from Student Services. The university will provide you with resources for any audio/visual needs that you may have with the learning management system or course content.

It is critical that you contact UWG Accessibility Services immediately to find out what accommodations are necessary so we can work together to facilitate your success in this class. Please consult the UWG Accessibility Services site http://www.westga.edu/accessibility or call (678) 839-6428 for more details regarding accessibility for this course.

Note on Syllabus Modifications
I reserve the right to modify this syllabus at any time during the course of the term, particularly with regards to course schedule. Students will be notified of all syllabus modifications. In a case where a substantial modification is required, I will reissue a revised syllabus.
Tentative Schedule

Readings are listed for the 1st edition (1E) and 2nd edition (2E) of Tro.

<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>January 6
11.2 - 11.3
Molecular Structure Review
Intermolecular Forces</td>
<td>January 8
11.4 - 11.5
Surface Tension, Viscosity,
Capillary Action
Vaporization and Boiling</td>
</tr>
<tr>
<td>2</td>
<td>January 13
11.6, 11.7
Sublimation and Fusion
Heating Curves</td>
<td>January 15
11.8, 13.2 - 13.4
Phase Diagrams
Solution Energetics & Equilibria</td>
</tr>
<tr>
<td>3</td>
<td>January 20
NO CLASSES</td>
<td>January 22
13.5, 13.6
Concentration Units
Colligative Properties</td>
</tr>
<tr>
<td>4</td>
<td>January 27
13.7
Colligative Properties Continued</td>
<td>January 29
Exam 1</td>
</tr>
<tr>
<td>5</td>
<td>February 3
14.2 - 14.4
Collision Theory
Definition of Reaction Rates
Differential Rate Laws</td>
<td>February 5
14.4 - 14.5
Differential Rate Laws continued
Integrated Rate Laws & Half-Lives</td>
</tr>
<tr>
<td>6</td>
<td>February 10
14.6 - 14.8
Arrhenius Theory
Reaction Mechanisms & Catalysis</td>
<td>February 12
15.2 - 15.5
Dynamic Equilibria
(K_c) & (K_p)
Heterogeneous Equilibria</td>
</tr>
<tr>
<td>7</td>
<td>February 17
15.6 - 15.7
Calculating Equilibrium Constants & Reaction Quotients</td>
<td>February 19
15.8
Calculating Equilibrium []s</td>
</tr>
<tr>
<td>8</td>
<td>February 24
15.9
Calculating Equilibrium []s cont’d
Le Châtelier’s Principle</td>
<td>February 26
Exam 2
Feb 28 is Last Day to Withdraw with a W</td>
</tr>
<tr>
<td>9</td>
<td>March 2
16.2 - 16.3, 16.6
Acid and Base Definitions
(K_w), pH, and pOH</td>
<td>March 4
16.4 - 16.5, 16.7 - 16.8
(K_a), and (K_b)
Acid/Base Strength
Strong Acid & Base Calculations</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Sections</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>March 9</td>
<td>16.7, 16.8 Weak Acid & Base Calculations</td>
</tr>
<tr>
<td></td>
<td>March 11</td>
<td>Lewis Acids and Bases</td>
</tr>
<tr>
<td>11</td>
<td>March 16</td>
<td>NO CLASSES</td>
</tr>
<tr>
<td></td>
<td>March 18</td>
<td>NO CLASSES</td>
</tr>
<tr>
<td>12</td>
<td>March 23</td>
<td>17.2, 17.3 Buffers</td>
</tr>
<tr>
<td></td>
<td>March 25</td>
<td>Henderson-Hasselbalch</td>
</tr>
<tr>
<td>13</td>
<td>March 30</td>
<td>17.5 - 17.7 Solubility Product</td>
</tr>
<tr>
<td></td>
<td>March 30</td>
<td>Formation Constant</td>
</tr>
<tr>
<td>14</td>
<td>April 6</td>
<td>18.2 - 18.4, 18.7 Entropy and Spontaneity Changes in Entropy</td>
</tr>
<tr>
<td></td>
<td>April 8</td>
<td>Entropy of Surroundings</td>
</tr>
<tr>
<td>15</td>
<td>April 13</td>
<td>18.8 - 18.10 ΔG for Nonstandard Cond. Calculating K from ΔG</td>
</tr>
<tr>
<td></td>
<td>April 15</td>
<td>Identifying and Balancing Redox Reactions</td>
</tr>
<tr>
<td>16</td>
<td>April 20</td>
<td>19.3, 19.4 Galvanic Cells Standard Electrode Potentials</td>
</tr>
<tr>
<td></td>
<td>April 22</td>
<td>Galvanic Cells Standard Electrode Potentials</td>
</tr>
<tr>
<td>17</td>
<td>April 27</td>
<td>Exam 4</td>
</tr>
</tbody>
</table>

Final Exam: See Date and Time Posted by the Registrar *(Note that sometimes these dates change before the end of the semester. Keep up to date with the link below)*.