University of West Georgia

Course Syllabus
Foundation of Numbers and Operations (MATH 2008)
Spring 2018

Instructor: M. Yazdani, Ph.D.
Phone: 678-839-4132
Office: 313 Boyd Building
email: myazdani@westga.edu
Website: mathematics-science.org

Conference Hours (By Appointment):
Tuesday 11:00 – 2:00
Thursday 11:00 – 2:00

REQUIRED COURSE MATERIALS

MYMATHLAB: Students are required to have a MyMathLab Subscription to complete this course. Go to http://www.pearsonmylabandmastering.com/northamerica/mymathlab/ to register and purchase an account. The course code for this section is: yazdani54076

STUDENT LEARNING OUTCOMES
After completion of the course, the student will --

Sequences & mathematical reasoning
- Identify patterns, predict next term, find and apply formulas for arithmetic, geometric, Fibonacci, "see-and-say", exponential (\(n^k\)), and power sequences (\(2^n\))
- Model sequences concretely, symbolically and abstractly
- Develop and use iteration and recursion to model and solve problems
- Investigate interesting subsets of the natural numbers (evens, odds, powers of two, Fibonacci numbers, perfect squares)

Number systems
- Compare and contrast number systems (additive, subtractive, character, place value)
- Identify the structure and chart the relationships in the real number system
- Describe the roles of zero, face and place value in the base ten system
- Model whole numbers using Base 10 blocks
- Analyze, explain and model binary operations on whole numbers using Base 10 blocks
- Recognize and analyze standard and non-standard algorithms for binary operations on whole numbers
- Analyze error patterns of students working standard algorithms for binary operations on whole numbers
- Recognize and apply properties of real numbers

Prime & composite numbers
- Explain two or more reasons why one is not a prime number
- Develop full definitions of prime and composite numbers
- Identify prime numbers between 1-100 and how to find prime numbers greater than 100
- List all factors of a given number
- Determine the prime factorization of any given whole number
- Find GCF/LCM for a given set of whole numbers

Integers
- Model integers using 2-color chips
- Analyze, explain and model binary operations on integers using 2-color chips
- Explore historical/cultural scenarios using powers of two
- Explore powers of ten

Rational numbers
- Model fractions using Pattern blocks, Fraction bars and Fraction grids (area models)
- Model binary operations on fractions using Pattern blocks, Fraction bars and Fraction grids (area models)
- Explain and justify traditional algorithms for binary operations on fractions
- Create equivalent fractions using paper and manipulative
- Explain why rational numbers are dense on the real numbers; give an example of a number set that is not dense and explain why not
- Put a set of fractions in order from smallest to greatest
- Find at least two fractions between a given pair of fractions

In the context of the above expectations, a student will --

Mathematical processes
- Make conjectures and use deductive methods to evaluate the validity of conjectures
- Recognize that a mathematical problem can be solved in a variety of ways, evaluate the appropriateness of various strategies, and select an appropriate strategy for a given problem
- Evaluate the reasonableness of a solution to a given problem
- Use physical and numerical models to represent a given problem or mathematical procedure
- Recognize that assumptions are made when solving problems and identify and evaluate those assumptions
- Explore problems using verbal, graphical, numerical, physical, and algebraic representations

Mathematical Perspectives
- Appreciate the contributions that different cultures have made to the field of mathematics and the impact mathematics has on society and culture
- Understand and apply how mathematics progresses from concrete to representation to abstract generalizations
Communication
• Communicate mathematical ideas and concepts in age-appropriate oral, written and visual forms for a class presentation
• Use mathematical processes to reason mathematically, solve mathematical problems, make mathematical connections within and outside of mathematics, and communicate mathematically
• Reflect on personal learning, change of attitude and beliefs, and growth in understanding through mathematical journaling
• Translate mathematical statements among developmentally appropriate language, standard English, mathematical language, and symbolic mathematics

Technology
• Use appropriate technology such as calculators, computer software, and the Internet to explore, research, solve, and compare mathematical situations and problems

Professional Development
• Be familiar with the National Council of Teachers of Mathematics and the Principles and Standards for School Mathematics, the NCTM website, and NCTM journals

Course Schedule:

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Introduction, Exploration with Patterns, Algebraic Thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>An Introduction to Logic, Problem Solving</td>
</tr>
<tr>
<td>Week 3</td>
<td>Sets, Set Operation</td>
</tr>
<tr>
<td>Week 4</td>
<td>Addition, Subtraction, Multiplication, and Division of Whole Numbers, Problem Solving</td>
</tr>
<tr>
<td>Week 5</td>
<td>Numeration Systems</td>
</tr>
<tr>
<td>Week 6</td>
<td>Algorithms for Whole-Number Addition and Subtraction, Algorithms for Whole-Number Multiplication and Division</td>
</tr>
<tr>
<td>Week 7</td>
<td>Mental Mathematics</td>
</tr>
<tr>
<td>Week 8</td>
<td>Estimation, Problem Solving</td>
</tr>
<tr>
<td>Week 9</td>
<td>Integers and the Operation of Addition and Subtracting, Integers and the Operation of Multiplication and Division</td>
</tr>
<tr>
<td>Week 10</td>
<td>Problem Solving</td>
</tr>
<tr>
<td>Week 11</td>
<td>The Set of Rational Numbers, Addition and Subtraction of rational Numbers, Multiplication and Division of Rational Numbers, Problem Solving</td>
</tr>
<tr>
<td>Week 12</td>
<td>Introduction to Decimals, Operation with Decimals</td>
</tr>
<tr>
<td>Week 13</td>
<td>Non-Terminating Decimal</td>
</tr>
<tr>
<td>Week 14</td>
<td>Percent</td>
</tr>
<tr>
<td>Week 15</td>
<td>Computing Interest, Real Numbers, Problem Solving</td>
</tr>
<tr>
<td>Week 16</td>
<td>Course Review</td>
</tr>
</tbody>
</table>

INSTRUCTIONAL METHODS AND ACTIVITIES

This course is 95-99% Online.

Evaluation and grade Assignment:

- Homework - 20%
- Online tests (4 total) - (40%)
- Proctored Midterm - offline (20%)
- Proctored Final Exam - offline (20%)

Final grade will be determined by point accumulation as follows:

- 90% - 100%: A
- 80% - 89%: B
- 70% - 79%: C
- 60% - 69%: D
- <60%: F

Conferences: Conferences can be beneficial and are encouraged. All conferences should occur during the instructor’s office hours by appointment. The instructor is very concerned about the student’s achievement and well-being and encourages anyone having difficulties with the course to come by the office for extra help.

Academic Honesty: The Online Tests are meant to be completed alone, without the help of any other person. Any serious form of academic dishonesty will be reported to the University. Definitions of academic dishonesty are defined in the student handbook: www.westga.edu/handbook

Note: If you have a documented disability, which will make it difficult for you to carry out the course work as I have outlined and / or if you need special accommodation or assistance due to disability, please contact me as soon as possible.

Important: Students should review the additional information regarding university’s policies at: https://www.westga.edu/UWGSyllabusPolicies/

Important days:

Midterm exam: Friday February 23 at 3:30 PM, Boyd Building, Carrollton Campus
Last day to drop with a grade of W is February 28
Final Exam: Friday April 27 at 3:30 PM Boyd Building, Carrollton Campus