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Biomedical data are abundant
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Systems biology and machine learning can 
generate predictive models from data
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Heterogeneous ensembles can enhance 
effectiveness of predictive modeling
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Selecting a parsimonious set of models into an ensemble can 
further advance predictive performance and interpretability



Reinforcement Learning: searching a large structured 
environment with rewards to find an optimal path

(behavior) to reach the goal

An agent learns by interacting with its environment through “exploitation-exploration”.



Ensemble selection using Reinforcement Learning



Reward functions can be formulated in terms of 
ensemble performance and/or diversity

Fine balance between ensemble 
performance and ensemble diversity
We have designed several search 
strategies focused on: 

• performance
(Stanescu and Pandey, PSB 2017)

• diversity 
(Stanescu and Pandey, arXiv 2018)
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Target problem and evaluation methodology
• Predict splice sites in various organisms based on nucleotide positional match 

representation using several public datasets.

• 10 bagged versions of 18 different classifiers: 180 base classifiers in a 5-fold cross-validation setup.
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Problem C. elegans D. melanogaster P. pacificus C. remanei A. thaliana

#Features 141 141 141 141 141

#Positives 1,598 997 1,596 1,600 1,600

#Negatives 158,150 99,003 156,326 157,542 158,377

Total 159,748 100,000 157,922 159,142 159,977



Performance of ensembles selected using RL 
and other approaches



Conclusions
• Reinforcement learning-driven ensembles are competitive in predictive

performance to larger ensembles consisting of all base predictors, while
being substantially smaller, i.e., more parsimonious. (Stanescu and Pandey, PSB 2017)

• Ensemble diversity, measured appropriately, can build even more accurate
and parsimonious ensembles. (Stanescu and Pandey, arXiv 2018)

• Implementation available: https://github.com/GauravPandeyLab/LENS

• Future Work
• Test the RL ensemble framework on larger datasets, including non-biomedical ones.
• Develop more efficient (parallel) implementations of the framework.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147733/
https://arxiv.org/abs/1805.02103
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